
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

The theory of eddy current nondestructive
evaluation by using the volume integral equation
method
Tao Wu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Electronics Commons, and the Electromagnetics and Photonics
Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Wu, Tao, "The theory of eddy current nondestructive evaluation by using the volume integral equation method" (2016). Graduate
Theses and Dissertations. 16058.
https://lib.dr.iastate.edu/etd/16058

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F16058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=lib.dr.iastate.edu%2Fetd%2F16058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=lib.dr.iastate.edu%2Fetd%2F16058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16058?utm_source=lib.dr.iastate.edu%2Fetd%2F16058&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

The theory of eddy current nondestructive evaluation by using the volume

integral equation method

by

Tao Wu

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

Program of Study Committee:

John R. Bowler, Major Professor

Jiming Song

Nicola Bowler

Nathan Neihart

Mani Mina

Iowa State University

Ames, Iowa

2016

Copyright c© Tao Wu, 2016. All rights reserved.



www.manaraa.com

ii

DEDICATION

To my wife Yuhan Tang,

Without whose supports and patience, I would not have been able to complete this work,

And to my parents, Qifu Wu and Shuilian Fang,

Who brought me up and had sacrificed a lot to get me a good education.



www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Eddy-current Nondestructive Evaluation . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Modeling of Probe Field and Interaction with Flawless Structures . . . . . . . . 10

2.2 Modeling of Probe-Flaw Interaction . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Analytical and Semi-analytical Methods of Structures with Simplifying

Crack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Modeling of the Ferromagnetic Conductors . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 3. VOLUME INTEGRAL EQUATION AND FORMULATIONS 17

3.1 Electromagnetic Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Understanding of Skin Depth δ . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Dyadic Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Dyadic Green Functions with Electric Source . . . . . . . . . . . . . . . 21

3.2.2 Dyadic Green Functions with Magnetic Source . . . . . . . . . . . . . . 23



www.manaraa.com

iv

3.3 Volume Integral Equation for a Layered Medium with a Flaw . . . . . . . . . . 24

3.3.1 Volume Integral Equation for Eddy-current Application in the Quasi-

static Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Matrix Approximation of Volume Integral Equations . . . . . . . . . . . 29

3.4 Dyadic Green’s Kernels of a Layered Medium . . . . . . . . . . . . . . . . . . . 32

3.4.1 Dyadic Green’s Kernels in the Cartesian Coordinate System . . . . . . . 36

3.4.2 Dyadic Green’s Kernels in the Cylindrical Coordinate System . . . . . . 38

CHAPTER 4. INCIDENT FIELD EVALUATION FOR PLANAR AND

CYLINDRICAL STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Incident Field in Planar Layered Structure . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 The Fields for a Coil in Free-space . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 The Fields for a Coil above an Infinite Half-space Conductor . . . . . . 44

4.1.3 The Fields for a Coil above an Infinite Conductor Slab . . . . . . . . . . 47

4.2 Incident Field in Cylindrical Layered Structure . . . . . . . . . . . . . . . . . . 51

4.2.1 Incident Field in Free-space . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Incident Field in the Conductive Region for a Borehole . . . . . . . . . 55

4.2.3 Incident Field in a Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CHAPTER 5. COIL IMPEDANCE CHANGES DUE TO CRACKS IN

FERROMAGNETIC PLANAR STRUCTURES . . . . . . . . . . . . . . . . 60

5.1 Green’s Function for an Unbounded Domain . . . . . . . . . . . . . . . . . . . . 60

5.2 Dyadic Green’s Function for a Ferromagnetic Half-space Conductor . . . . . . . 61

5.3 Dyadic Green’s Function for a Ferromagnetic Conductive Slab . . . . . . . . . . 68

5.4 Singularity of Gee, Gmm in an Unbounded Domain . . . . . . . . . . . . . . . . 71

5.4.1 Cuboidal Exclusion Region . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.2 Spherical Exclusion Region . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.3 Integral Evaluation in Regular Region . . . . . . . . . . . . . . . . . . . 77

5.5 Singularity of Gem, Gme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Singularity Treatment Verification by Calculation of RCS of a Dielectric Sphere 79



www.manaraa.com

v

5.7 Modeling Verification for Non-ferromagnetic Material . . . . . . . . . . . . . . . 81

5.7.1 Experiment 1: Conductor Plate with a Rectangular Crack . . . . . . . . 81

5.7.2 Experiment 2: Conductor Plate with a Semi-elliptical Crack . . . . . . . 83

5.7.3 Experiment 3: Conductor Plate with a Through-thickness Crack . . . . 86

CHAPTER 6. EXPERIMENTAL VALIDATION AND RESULTS OF FER-

ROMAGNETIC SPECIMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Eddy-current Impedance Measurement System . . . . . . . . . . . . . . . . . . 91

6.2 Measurement of Conductivity and Permeability . . . . . . . . . . . . . . . . . . 94

6.3 Experiment Data for a Ferromagnetic Steel Specimen with a Semi-elliptical Notch 96

6.3.1 13 mm Thick Slab Specimen . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.2 3 mm Thin Slab Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Liftoff Effect on Probability of Detection . . . . . . . . . . . . . . . . . . . . . . 118

6.5 The Comparison of the Impedance Variation between Ferromagnetic and Non-

ferromagnetic Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

CHAPTER 7. ARBITRARY ORIENTATION INDUCTION COIL IN-

TERACTING WITH CYLINDRICAL STRUCTURES . . . . . . . . . . . 125

7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Field Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3.1 Scalar Decomposition of the Field . . . . . . . . . . . . . . . . . . . . . 127

7.3.2 Field of a Circular Current Filament . . . . . . . . . . . . . . . . . . . . 128

7.3.3 Coordinate Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3.4 Circular Filament with an Azimuthal Tilt . . . . . . . . . . . . . . . . . 134

7.3.5 Circular Filament with a Polar Tilt . . . . . . . . . . . . . . . . . . . . 135

7.3.6 Rotary Filament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4 Free Space Coil Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.5 Coil Impedance Change and Experiment . . . . . . . . . . . . . . . . . . . . . . 138

7.5.1 Model Predicted Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



www.manaraa.com

vi

7.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

CHAPTER 8. ARBITRARY ORIENTATION INDUCTION COIL IN-

TERACTING WITH PLANAR STRUCTURES . . . . . . . . . . . . . . . 147

8.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.3 Circular Filament Field and Source Function Evaluation . . . . . . . . . . . . 149

8.3.1 Scalar Decomposition of the Fields . . . . . . . . . . . . . . . . . . . . . 149

8.3.2 Field of a Tilted Circular Filament Loop . . . . . . . . . . . . . . . . . . 149

8.3.3 Source Coefficient Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 152

8.4 Coil Field Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.4.1 Coil Field in the Free-space . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.4.2 Induced Eddy Current in the Conductive Half-space . . . . . . . . . . . 155

8.5 Impedance Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

APPENDIX A. REFLECTION AND TRANSMISSION COEFFICIENT FOR

PLANARLY AND CYLINDRICALLY LAYERED MEDIUM . . . . . . . 159

A.1 Reflection and Transmission in a Cartesian Coordinate System . . . . . . . . . 159

A.1.1 Half Space Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.1.2 Slab with a Source Above It . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.1.3 Slab with an Internal Source . . . . . . . . . . . . . . . . . . . . . . . . 163

A.2 Reflection and Transmission in a Cylindrical Coordinate System . . . . . . . . 164

A.2.1 Borehole with an Internal Source . . . . . . . . . . . . . . . . . . . . . . 166

A.2.2 Borehole with an External Source . . . . . . . . . . . . . . . . . . . . . 170

A.2.3 Tube with an Internal Source . . . . . . . . . . . . . . . . . . . . . . . . 172

A.2.4 Tube with a Source between inner and outer surface . . . . . . . . . . . 174

A.2.5 Tube with an External Source . . . . . . . . . . . . . . . . . . . . . . . . 175



www.manaraa.com

vii

APPENDIX B. BOBBIN COIL CO-AXIAL WITH BOREHOLE AND TUBE

STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

APPENDIX C. USEFUL MATHEMATICAL FORMULATIONS . . . . . . . 180

C.1 Fourier and Bessel Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.2 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.2.1 Differential Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

C.2.2 Integral Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C.3 Bessel Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



www.manaraa.com

viii

LIST OF TABLES

Table 4.1 Coil and borehole parameters . . . . . . . . . . . . . . . . . . . . . . . 56

Table 5.1 Coil and crack parameters for Team Workshop Problem 15 . . . . . . . 81

Table 5.2 Coil and crack parameters for experiment 2 . . . . . . . . . . . . . . . 83

Table 5.3 Coil and crack parameters for experiment 3 . . . . . . . . . . . . . . . 86

Table 6.1 Probe coil 1, 13 mm specimen and notch parameters . . . . . . . . . . 99

Table 6.2 Probe coil 1, 3 mm specimen and notch parameters . . . . . . . . . . . 113

Table 7.1 Coil and inconel steam generator tube parameters for experiment . . . 142

Table 7.2 Coil and inconel steam generator tube parameters for theoretical calcu-

lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Table 8.1 Coil and specimen parameters . . . . . . . . . . . . . . . . . . . . . . . 156



www.manaraa.com

ix

LIST OF FIGURES

Figure 1.1 An circular air-cored coil with alternating current excited scans above

planar conductor plate . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2 Eddy current probe coil of different situation involved in modeling . . 5

Figure 3.1 Planarly multilayered medium with flaws in layer j . . . . . . . . . . . 24

Figure 4.1 Horizontal circular filament loop in the unbounded space . . . . . . . . 40

Figure 4.2 Horizontal coil in the unbounded space . . . . . . . . . . . . . . . . . . 41

Figure 4.3 The electromagnetic fields of a coil in the free space . . . . . . . . . . . 43

Figure 4.4 Horizontal coil above half-space conductive metal . . . . . . . . . . . . 44

Figure 4.6 Horizontal coil above conductive slab . . . . . . . . . . . . . . . . . . . 47

Figure 4.5 The electromagnetic fields of TEM Problem 15 . . . . . . . . . . . . . 48

Figure 4.7 The electromagnetic fields of TEM Problem 15, the slab thickness is 6

mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.8 A rotary coil locates in free space . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.9 The |Eφ| field at the borehole interface . . . . . . . . . . . . . . . . . . 57

Figure 5.1 Half Space with Point Source in Region 2 . . . . . . . . . . . . . . . . 62

Figure 5.2 Slab with Embedded Point Source in Region 2 . . . . . . . . . . . . . . 68

Figure 5.3 RCS results comparison between VIE method and Mie-series with 32 cells 79

Figure 5.4 RCS results comparison between VIE method and Mie-series with 280

cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.5 RCS results comparison between VIE method and Mie-series with 912

cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



www.manaraa.com

x

Figure 5.6 The mesh of the crack region of TEM Problem 15 . . . . . . . . . . . . 81

Figure 5.7 Comparison between experimental and theoretical result of resistance

changes of TEM Problem 15 at 900 Hz . . . . . . . . . . . . . . . . . . 82

Figure 5.8 Comparison between experimental and theoretical result of reactance

changes of TEM Problem 15 at 900 Hz . . . . . . . . . . . . . . . . . . 82

Figure 5.9 The mesh of the crack region of experiment 2 . . . . . . . . . . . . . . 83

Figure 5.10 Comparison between experimental and theoretical result of resistance

changes of experiment 2 at 1027 Hz . . . . . . . . . . . . . . . . . . . . 84

Figure 5.11 Comparison between experimental and theoretical result of reactance

changes of experiment 2 at 1027 Hz . . . . . . . . . . . . . . . . . . . . 84

Figure 5.12 Comparison between experimental and theoretical result of resistance

changes of experiment 2 at 2081 Hz . . . . . . . . . . . . . . . . . . . . 85

Figure 5.13 Comparison between experimental and theoretical result of reactance

changes of experiment 2 at 2081 Hz . . . . . . . . . . . . . . . . . . . . 85

Figure 5.14 Comparison between model prediction and experiment of resistance

changes at 0.631 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 5.15 Comparison between model prediction and experiment of resistance

changes at 0.631 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 5.16 Comparison between model prediction and experiment of resistance

changes at 2.5 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.17 Comparison between model prediction and experiment of resistance

changes at 2.5 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.18 Comparison between model prediction and experiment of resistance

changes at 10 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 5.19 Comparison between model prediction and experiment of resistance

changes at 10 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 6.1 Impedance add-on circuit structure . . . . . . . . . . . . . . . . . . . . 91



www.manaraa.com

xi

Figure 6.2 Eddy-current impedance measurement system which includes power sup-

ply, lock-in amplifier and impedance add-on module . . . . . . . . . . . 92

Figure 6.3 Experimental bench used to measure the coil impedance change due to

the narrow notch in the 440SS steel slab . . . . . . . . . . . . . . . . . 93

Figure 6.4 Eddy-current probe structure . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 6.5 ACPD test bench for measuring specimen conductivity and permeability 95

Figure 6.6 The variation of specimen conductivity and permeability in terms of

position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 6.7 Thick 440SS steel slab specimen with semi-elliptical notch . . . . . . . 96

Figure 6.8 8 mm notch (middle one) in 13mm thick specimen with the EDM cutting

tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 6.9 The resistance change of a circular coil above a flawles 440SS slab as a

function of frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 6.10 The reactance change of a circular coil above a flawles 440SS slab as a

function of frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 6.11 Along the notch scan diagram . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 6.12 Comparison between model prediction and experimental data of resis-

tance variation at 3 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 6.13 Comparison between model prediction and experimental data of reac-

tance variation at 3 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 6.14 Comparison between model prediction and experimental data of impedance

variation in impedance plane at 3 kHz . . . . . . . . . . . . . . . . . . 100

Figure 6.15 Comparison between model prediction and experimental data of resis-

tance variation at 4 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 6.16 Comparison between model prediction and experimental data of reac-

tance variation at 4 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 6.17 Comparison between model prediction and experimental data of impedance

variation in impedance plane at 4 kHz . . . . . . . . . . . . . . . . . . 102



www.manaraa.com

xii

Figure 6.18 Comparison between model prediction and experimental data of resis-

tance variation at 5 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 6.19 Comparison between model prediction and experimental data of reac-

tance variation at 5 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 6.20 Comparison between model prediction and experimental data of impedance

variation in impedance plane at 5 kHz . . . . . . . . . . . . . . . . . . 103

Figure 6.21 Across the notch scan diagram . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 6.22 Comparison between model prediction and experimental data of resis-

tance variation at 3 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 6.23 Comparison between model prediction and experimental data of reac-

tance variation at 3 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 6.24 Comparison between model prediction and experimental data of impedance

variation in impedance plane at 3 kHz . . . . . . . . . . . . . . . . . . 106

Figure 6.25 Comparison between model prediction and experimental data of resis-

tance variation at 4 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 6.26 Comparison between model prediction and experimental data of reac-

tance variation at 4 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 6.27 Comparison between model prediction and experimental data of impedance

variation in impedance plane at 4 kHz . . . . . . . . . . . . . . . . . . 107

Figure 6.28 Comparison between model prediction and experimental data of resis-

tance variation at 5 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 6.29 Comparison between model prediction and experimental data of reac-

tance variation at 5 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 6.30 Comparison between model prediction and experimental data of impedance

variation in impedance plane at 5 kHz . . . . . . . . . . . . . . . . . . 109

Figure 6.31 Comparison between model prediction and experimental data of resis-

tance variation at 7 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 6.32 Comparison between model prediction and experimental data of reac-

tance variation at 7 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . 110



www.manaraa.com

xiii

Figure 6.33 Comparison between model prediction and experimental data of impedance

variation in impedance plane at 7 kHz . . . . . . . . . . . . . . . . . . 110

Figure 6.34 Impedance real part variation contour of 13mm specimen at 10kHz with

semi-elliptical notch based on experiment . . . . . . . . . . . . . . . . . 111

Figure 6.35 Impedance imaginary part variation contour of 13mm specimen at 10kHz

with semi-elliptical notch based on experiment . . . . . . . . . . . . . . 111

Figure 6.36 Thin 440SS steel slab specimen with semi-elliptical notch . . . . . . . . 112

Figure 6.37 6 mm notch in 3mm thick specimen with the EDM cutting tool . . . . 112

Figure 6.38 Comparison between model prediction and experiment data of resistance

variation at 10 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 6.39 Comparison between model prediction and experiment data of reactance

variation at 10 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 6.40 Comparison between model prediction and experiment of resistance

changes at 10 kHz for across-the-notch scan . . . . . . . . . . . . . . . 115

Figure 6.41 Comparison between model prediction and experiment of reactance changes

at 10 kHz for across-the-notch scan . . . . . . . . . . . . . . . . . . . . 115

Figure 6.42 Comparison between model prediction and experiment of resistance

changes at 10 kHz for both scans . . . . . . . . . . . . . . . . . . . . . 116

Figure 6.43 Comparison between model prediction and experiment of resistance

changes at 10 kHz for both scans . . . . . . . . . . . . . . . . . . . . . 116

Figure 6.44 Impedance real part variation contour of 3mm specimen at 10kHz with

semi-elliptical notch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 6.45 Impedance imaginary part variation contour of 3mm specimen at 10kHz

with semi-elliptical notch . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 6.46 The real part of impedance variation contour in terms of different liftoff

based on experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 6.47 The imaginary part of impedance variation contour in terms of different

liftoff based on experiment . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 6.48 The POD curve as a function of liftoff . . . . . . . . . . . . . . . . . . 121



www.manaraa.com

xiv

Figure 6.49 The simulated 2-D resistance variance due to the semi-elliptical notch

of ferromagnetic steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 6.50 The simulated 2-D resistance variance due to the semi-elliptical notch

of non-ferromagnetic steel . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 6.51 The simulated 2-D reactance variance due to the semi-elliptical notch

of ferromagnetic steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 6.52 The simulated 2-D reactance variance due to the semi-elliptical notch

of non-ferromagnetic steel . . . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 7.1 A circular induction coil of arbitrary orientation inside a conductive tube127

Figure 7.2 Circular filament centered at the point Q in the plane x0 = x′0 having

radius ρ0. The azimuthal rotation angle is φ and θ is the polar tilt angle.128

Figure 7.3 Triangle used to relate addition theorem variables using the cosine rule. 130

Figure 7.4 Circular filament centered at point Q. The filament surface S0 intersects

with y = 0 plane at the line AB . . . . . . . . . . . . . . . . . . . . . . 131

Figure 7.5 Plan view of the xy-plane intersected by the circular filament centered

at Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 7.6 Integration over the surface S0 bounded by the circular filament is di-

vided at the line AB into two parts. The linear function Y0(z0), shown

in the diagram, defines the perpendicular distance of this line from the

plane y0 = 0. In carrying out the intergration over z′0 one needs to set

the limits at the filament and at the line AB depending on the value of

y′0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 7.7 The cross-section view of a circular coil at y = 0 plane with polar tilt

angle θ is shown in dashed outline. The coil is centered at point P

and one filament loop of the coil is also shown to illustrate the filament

superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 7.8 The effect of tilted angle φ on normalized resistance changes for a cir-

cular coil with different φ inside a tube . . . . . . . . . . . . . . . . . . 139



www.manaraa.com

xv

Figure 7.9 The effect of tilted angle φ on normalized reactance changes for a circular

coil inside a tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 7.10 The effect of tilted angle θ on normalized resistance changes for a circular

coil with different θ inside a tube . . . . . . . . . . . . . . . . . . . . . 140

Figure 7.11 The effect of tilted angle θ on normalized reactance changes for a circular

coil with different θ inside a tube . . . . . . . . . . . . . . . . . . . . . 140

Figure 7.12 Comparison between coaxial bobbin coil and polar tilt coil with θ = 90◦

and x1 = 0 of normalized resistance changes for a coil inside a tube of

different frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 7.13 Comparison between coaxial bobbin coil and polar tilt coil with θ = 90◦

and x1 = 0 of normalized reactance changes for a coil inside a tube of

different frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure 7.14 The |E| distribution at the tube inner interface. a is the tube inner ra-

dius. The induced current can be obtained by multiplying conductivity

of the conductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 7.15 Comparison between experimental and theoretical result of normalized

resistance changes for a coil inside a tube of different frequency . . . . 145

Figure 7.16 Comparison between experimental and theoretical result of normalized

reactance changes for a coil inside a tube of different frequency . . . . 145

Figure 8.1 An air-cored circular coil located above conductive plate. The coil axis

(dash line) has a polar tilted angle θ relative to z axis . . . . . . . . . 148

Figure 8.2 Circular filament centered at the point Q in the plane z0 = z′0 having

radius ρ0. The axis of the circular loop coincides with z0 axis . . . . . 150

Figure 8.3 A circular filament loop with titled angle θ in the free-space. The cross-

section view shows the y = 0 plane. . . . . . . . . . . . . . . . . . . . . 150

Figure 8.4 The triangle DEF used to relate addition theorem variables . . . . . . 152



www.manaraa.com

xvi

Figure 8.5 Circular filament centered at point Q. the filament surface S0 intersects

with y = 0 plane at the line AB, which split the S0 into two parts. The

triangles ∆RTS shows how Graf’s addition theorem is applied on it . . 153

Figure 8.6 The plane view of a tilted circular filament loop. The triangles ∆RTS

and ∆RTU are used to transform the global source coordinates to local

coordinates by Graf’s addition theorem . . . . . . . . . . . . . . . . . . 153

Figure 8.7 The cross-section view of a tilted circular coil is shown in dashed outline.

The coil is centered at point P and one filament loop of the coil is also

shown to illustrate the filament superposition . . . . . . . . . . . . . . 154

Figure 8.8 Amplitude Contour of eddy currents induced on the surface of a con-

ductive half-space by a circular coil with different titled angle . . . . . 155

Figure 8.9 The comparison of resistance variation between tilted coil with titled

angle θ = 0◦ and horizontal coil formulation due to the existence of

half-space conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure 8.10 The comparison of reactance variation between tilted coil with titled

angle θ = 0◦ and horizontal coil formulation due to the existence of

half-space conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure A.1 Half-space medium with source in region 1 . . . . . . . . . . . . . . . . 159

Figure A.2 Infinite large slab with source in region 1 . . . . . . . . . . . . . . . . . 161

Figure A.3 Slab with Embedded Source in Region 2 . . . . . . . . . . . . . . . . . 163

Figure A.4 Borehole structure with the source in region 1. The radius of hole is a 166

Figure A.5 Borehole structure with the source in region 2. The radius of hole is a 170

Figure A.6 Tube structure with the source in region 1 . . . . . . . . . . . . . . . . 172

Figure A.7 Tube with source in region 2 . . . . . . . . . . . . . . . . . . . . . . . . 174

Figure A.8 Tube with source in region 3 . . . . . . . . . . . . . . . . . . . . . . . . 175

Figure B.1 A eddy current coil located inside coaxial with borehole, the number

1,2,3,4 indicates different region . . . . . . . . . . . . . . . . . . . . . . 177



www.manaraa.com

xvii

Figure B.2 A eddy current coil located inside coaxial with Tube, the number 1,2,3,4,5

indicates different region . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Figure B.3 A eddy current coil located outside coaxial with Tube, the number

1,2,3,4,5 indicates different region . . . . . . . . . . . . . . . . . . . . . 179



www.manaraa.com

xviii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis.

First and foremost, I would like to thank Dr. John Bowler for his guidance, support and

patience throughout my research and study. His insights and words of encouragement have

often inspired me and renewed my hopes when encountering difficulties in my research. From

him, I learned a lot not only the knowledge of eddy current NDE but the general methodology

of how to solve a problem in the research. Besides, his EE588 course is so enlightening that

it opens the secret door of the eddy current NDE area for me. I am truly honored to have

completed my doctorate degree study under his guide.

I would like to thank my committee members for their suggestions and helps to this work:

Dr. Nicola Bowler, Dr. Jiming Song, Dr. Nathan Neihart and Dr. Mani Mina. Besides, I

would like to thank Dr. Jiming Song for his four great courses about electromagnetic fields,

which are very instructive and help me to gain valuable insights and better understanding on

this area. I would like to thank Dr. Nathan Neihart, the instructor of EE514, who taught us

a lot about RF circuit design, simulation and test.

I would additionally like to say thanks to my colleagues, Yuan Ji and Dr. Yi Lu, for their

help in my study and research at Iowa State University. My humble thanks goes to all my

friends, Dr. Kun Chen, Dr. Zhiwei Liu, Praveen Gurrala, Yang Bao, Liang Zhang and many

more, for their helps and encourage.

Last but not least, I would like to thank family. To my grandmother Meilan Wang, parents

Qifu Wu and Shuilian Fang, and sister Chunmei Wu, I am extremely thankful for their love

and support.



www.manaraa.com

xix

ABSTRACT

Since 1950s sodium cooled fast reactors (SFR) have been developed and have been approach-

ing their commercialization as nuclear power plants through the development of experimental

and prototype reactors. High-performance steels such as 9Cr-1Mo, oxide dispersion strength-

ened (ODS) have been used for metallic parts such as heat exchanger tubes and fuel cladding

in fast reactors. They are favored because of their high temperature creep and fatigue resis-

tance properties. Periodical nondestructive in-service inspection (ISI) of those metallic parts is

essential since any damage in the parts can lead to malfunction or even destructive accidents.

However, most of the numerical and theoretical models are developed for non-magnetic materi-

als. In this dissertation, theoretical and computational approaches are proposed to solve eddy

current problems for both ferromagnetic and non-ferromagnetic conductors.

By applying the volume equivalence theorem, the effects of a flaw in the conductor are

represented by an equivalent electric current dipole density and a magnetic dipole density.

Volume integral equations are then derived for multi-layered structures. The general dyadic

Green’s kernels dedicated to a layered geometry are derived here based on a decomposition of

the electromagnetic field into a transverse electric scalar potential and a transverse magnetic

scalar potential. The dyadic Green’s kernels for either planar-layered or cylindrical-layered

structures can be derived from the corresponding scalar kernels.

The dedicated dyadic Green’s kernels for a conductive half-space and slab are derived and

discussed. Naturally, the method of moments (MoM) is used to obtain the numerical approxi-

mation of the integral equations. The incident field, also known as the unperturbed field, plays

a important role in the method of moments and is determined in Chapter 4, 7 and Chapter

8. For better accuracy and calculation efficiency, a simple analytical method for evaluating

the hyper-singular element is provided for the matrix component calculation and validated by

calculating the radar cross-section (RCS) of dielectric sphere.
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Experiments are carried out to obtain the impedance variation of a circular coil probe due

to narrow notches in a ferromagnetic steel slabs (440 stainless steel) for comparison with the-

oretical and computational models. Good agreement has been achieved. The model validation

of the non-ferromagnetic conductor has also done by comparing model predictions with existing

benchmark experimental data. This numerical model can be used to refine the eddy current

probe design and predict the probe signal due to cracks in ferromagnetic metallic parts.

A particular challenge of eddy current inspection in a fast reactor is that the coil position

cannot be guided by optical aids due to the presence of liquid sodium during the periods when

inspection is possible. However, electromagnetic sensing can be used. in the dissertation, we

proposed a novel theoretical electromagnetic model of an eddy current probe with arbitrary

orientation with respect to a tube or a plate. The experiment is also carried out and compared

with theoretical prediction showing excellent agreement. The theoretical results are also useful

in wobble noise analysis and the numerical method for fast evaluation of incident field term of

integral equation method.
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CHAPTER 1. INTRODUCTION

Nondestructive evaluation (NDE) is an interdisciplinary field of study which concentrates on

the process of inspecting, testing and evaluating structures, materials, components or assemblies

for fatigue, flaws or differences in characteristics without impairing the future usefulness of the

part or system. Because NDE can provide valuable information about objects under detection,

which help us to control and monitor their quality and safety status, and does not damage

them, it is a highly valuable technique that is widely used in manufacturing, fabrication and

in-service inspection as a stand-by system to control manufacturing processes to ensure product

integrity and reliability and to ensure the usefulness and safety of the products in use.

NDE includes a wide range of categories used in science and industry. The method category

names often refer to the type of penetrating medium or the equipment used to perform the

test. Current NDE methods include acoustic emission, electromagnetic, guided wave, ground

penetrating radar, laser, liquid penetrant, radiographic, ultrasonic, vibration, therm-graphic

and visual methods.

Electromagnetic (EM) NDE methods is an important category and involves the applica-

tion of electromagnetic energy to evaluate the condition of objects under test by analyzing

the interaction process between the EM fields and materials. EM NDE generally comprises

several different subsidiary methods or techniques based on different classification standards.

It includes magnetic flux leakage, eddy current, radio frequency (RF), microwave wave and ter-

ahertz radiation. The working frequency of magnetic flux leakage method is usually near 0 Hz.

As the frequency increases from DC, the fundamental physical process gradually changes. From

100 Hz to 10 MHz, the displacement current component of Maxwell’s equations is negligible

and the field is usually refer to as a quasi-static field [1]. At these frequencies, the Maxwell’s

equations reduce to diffusion equations. As the frequency increase further, the field propa-
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gates in the form of waves and has the property to transmit a long distance, which is widely

used as an antenna in the wireless communication [2]. Below 20 MHz, we have AC/DC field

measurement method, magnetic flux leakage method, remote field method based on EM fields

measurement and alternating current potential drop (ACPD) method [3]. From the application

perspective, the eddy current method is usually for the inspection of metallic conductors, while

RF, microwave and Terahertz methods are mostly used in weak-conductive materials such as

multi-layer dielectric slabs, laminated composites [4] and the EM imaging field [5]. Of these

several EM sub-methods, the eddy-current method is the most widely used in both economic

field inspection and academic research.

1.1 Eddy-current Nondestructive Evaluation

The eddy current method involves the use of time-varying magnetic field which will induce

the eddy current in the conductor. Hence, in general, eddy current tests are applicable to

materials with significant electrical conductivity, such as metals, alloys and composites with

conducting layers or fibers. It can also used to measure the thickness of non-conductive layers

on the surface of metallic materials by using the liftoff effect [1].

Although a comprehensive understanding of the underlying physical process should be

gained through Maxwell’s equations, the technique basis can also be understood qualitatively.

When a coil excited by an alternating current is placed in close proximity to a homogeneous

conductive specimen without a flaw, Fig. 1.1, the primary field, set up by the eddy current

coil, induces eddy currents within the conductive specimen. In conformity with Lenz’s law, the

secondary field generated by these eddy currents will oppose the change of the primary field

and consequently the terminal impedance of the coil changes. For a specific coil, the impedance

change is affected by the probe size and liftoff, the conductivity and permeability of material

and frequency. If a discontinuity, crack or flaw exists in the test specimen, the eddy current will

redistribute and the inductance and resistance of the eddy current coil will be correspondingly

changed.

For a non-ferromagnetic specimen, the inductance of coil is always decreased due to the

opposing nature of the primary and secondary fields. However, for a ferromagnetic specimen,
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the inductance of coil can increase due to the higher permeability of the material. At the same

time, the coil resistance will also increase because of both the hysteresis and eddy current losses

[1, 6].

Primary 

Magnetic field

Excitation Current

Eddy Current
Secondary

Magnetic field

Figure 1.1: An circular air-cored coil with alternating current excited scans above planar con-

ductor plate

There are several different eddy current testing techniques. They are the single frequency

eddy current, the multi-frequency eddy current, pulsed eddy current, remote field eddy cur-

rent, SQUID-based eddy current [7], eddy current probe array techniques beginning with the

conventional and moving to the recent developments [8].

From the modeling point of view, there are two general problems, the forward problem and

the inverse problem. The crack size, shape and specimen properties of the forward problem

are usually known. One subset of the forward modeling problem is to obtain the probe field

distribution and impedance change with or without the existence of unflawed specimen by

analytical or numerical method. A classic study of circular air-cored coil over a planar-layered

conductor with the coil axis perpendicular with the conductor plane and encircling co-axially

with a cylindrical-layered cylinder is given in an analytical formulation by Dodd and Deeds [9].

The impedance variation of eddy current coil, ∆Z due to the presence of the flawless structure

is given by

∆Z = Z − Z0 = ∆R+ j∆X (1.1)

where Z0 is the coil impedance in the free space, Fig. 1.2a, and Z is the coil impedance in the

presence of the flawless structure, Fig. 1.2b.
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Another subset of the forward modeling problem is the probe-defect interaction, Fig 1.2c,

which aim at getting a better understanding and insight of probe-defect interactions in order

to optimize the probe design and even the whole eddy-current measurement system design to

obtain the best parameter settings. The impedance variation of eddy current coil, ∆Zc, due to

the presence of the crack is given by

∆Zc = Zc − Z == ∆Rc + j∆Xc (1.2)

where Zc is the coil impedance with the existence of crack structure, Fig. 1.2c.

The inversion problem of eddy current nondestructive evaluation, which is aimed to de-

termine the size, shape and/or material properties of a flaw or other features of conductor

structures from a set of observations on EMF, is another big topic in the eddy current model-

ing [10]. Generally speaking, the inversion problem is a far more complex problem compared

with forward modeling. A more detailed summary about inversion problem can be found in

[10, 11].

1.2 Statement of the Problem

Compared with most existing thermal reactors, fast neutron reactors can extract more

energy from nuclear fuel, reduce the total radiotoxicity of nuclear waste, and dramatically

reduce the waste’s lifetime to several hundreds of years [12]. High-performance steels such as

9Cr-1Mo, oxide dispersion strengthened (ODS) find extensive applications to fabricate metallic

parts such as heat exchanger tubes of fast reactor in view of it’s favorable high temperature

creep and fatigue resistance properties. Periodical nondestructive in-service inspection (ISI) of

those metallic parts is essential since any damage in the parts can lead to malfunction or even

destructive accidents. The magnetic flux leakage (MFL) technique is being explored as it can

detect both shallow surface and deep sub-surface defects in the SFR heat exchanger tubes [13].

However it’s usually limited to the ferromagnetic material and the metallic parts in the reactor

are mainly non-ferromagnetic. In addition, it is challenging due to the physical constraints

of placing the magnetizing coils and sensing circuit with the existence of high temperature

conductive coolant.
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(a) An circular air-cored coil in free space with impedance
Z0 = jX0

(b) An circular air-cored coil above a flawless conductive slab with impedance
Z = R+ jX

(c) An circular air-cored coil with alternating current excited scans above crack
with impedance Zc = Rc + jXc

Figure 1.2: Eddy current probe coil of different situation involved in modeling
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Eddy-current method are widely used for inspections of steam generator tubes in power

plants due to its high accuracy, easy use and ability to detect defeats both inside and outside the

tube wall. However, the eddy-current inspection in SFR is more challenging due to the resulting

weak probe signal of cracks, the presence of liquid conductive coolant, high temperature (250

◦C).

In order to refine inspection methods and gain an insight into the eddy current probe

responses due to flaws, a number of theoretical and computational models include analytical

methods, semi-analytical methods and numerical methods have been developed. Although

semi-analytical solutions are accessible for certain structures with ideal cracks by applying

some idealized approximations, such as TREE method [14, 15] and thin-skin approximation at

high frequency [16, 17], it is expedient to seek numerical approximations of the probe signals and

electromagnetic fields since numerical methods are more flexible to handle general probe-flaw

interaction problem. Finite element methods (FEM) tend to be more general but expensive in

computational resources due to requirement of discretization of the whole domain of interest.

In contrast, integral equation method has attracted more and more attention due to the fact

that it only needs discretization of the flaw region in many important cases which means much

fewer unknowns are needed and much faster calculations are possible.

Integral equation models of planar and cylindrical structures with flaws has been developed

via the volume and boundary element method [18, 19, 20, 21, 22]. However, to the best of

our knowledge, most of these models are developed for non-magnetic metals or few details are

provided about the key steps in the theory such as dealing with hyper-singularity [23, 21]. So a

eddy-current inspection system with better sensitivity of small signal due to small localized de-

fects is demanded. In addition, the demand for a effective 3-D numerical electromagnetic model,

which is valid for arbitrary volumetric flaws, ferromagnetic conductors and non-ferromagnetic

conductors is increasing. All the equations involved in the numerical 3-D model, such as integral

equations, incident field. etc, are also needed to extend to cover ferromagnetic materials.

Another challenge of eddy current inspection that we have addressed is that in a fast reactor

environment, the coil position cannot be guided by sonar and optical aids but electromagnetic

sensing can be used. In this thesis, we proposed a novel theoretical electromagnetic model of an
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eddy current probe used as a position sensor with respect to a tube and plate. This method can

also be used to analyze the signal noise caused by unwanted probe tilt encountered in practical

eddy current testing.

1.3 Thesis Organization

The dissertation is organized as follows: Chapter 1 mainly introduces the nondestructive

evaluation background including fundamental concepts in the eddy-current nondestructive eval-

uation. In addition, the problems that this thesis concentrates on are also described. Chapter 2

presents the literature review on eddy-current NDE problems and modeling, especially the nu-

merical modeling for probe-flaw interaction problem and the ferromagnetic conductor. Chapter

3 shows the general volume integral equation method formulation for layered-medium, which is

valid for both Cartesian coordinate system and cylindrical coordinate system. Then the dyadic

kernels for specific coordinate system are described and presented in terms of scalar Green’s

kernels. Chapter 4 presents the incident fields formulation based on analytical methods. The

expressions are presented separately in Cartesian coordinate system and cylindrical coordinate

system. Chapter 5 shows the implementation of a volume scheme using the moment method

for half-space model and conductive slab model, which are valid for both ferromagnetic and

non-ferromagnetic metals. The explicit dyadic Green’s kernel formulation is discussed and

presented. It also provides simple analytical expressions to deal with the hyper-singularity

involved in integral element term evaluation, which avoids the singularity exclusion procedure.

We implemented the analytical expressions for singularity in the radar cross-section (RCS)

calculation of dielectric sphere in the free space and compared with results obtained based

on Mie-series method. Finally, the comparison with existing benchmark experiments are pro-

vided and excellent agreement is achieved. Chapter 6 discusses the experimental validation

and results of 440 stainless ferromagnetic steel with dedicated designed notch. The comparison

between model prediction and test results are presented. Chapter 7 focus on the modeling of

the circular air-cored coil with arbitrary orientation with the exist of cylindrical structure. The

potential application is the position sensor and analysis of the liftoff and tilt noise due to probe

liftoff variation and probe tilt during scan. Chapter 8 focus on the modeling of the circular
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air-cored coil with arbitrary orientation with the exist of planar structure, such as half-space

conductor, thin conductive slab, etc.

Appendix A presents the reflection and transmission coefficients derivation in both Carte-

sian coordinate system and cylindrical coordinate system for conductive and ferromagnetic

materials. Appendix B shows the impedance changes calculation for the scenario where the

probe coil is coaxial with the borehole, tube and rod. Appendix C concludes frequently used

mathematical identities and transforms.
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CHAPTER 2. LITERATURE REVIEW

The development of eddy current techniques for detecting flaws or cracks in metallic struc-

tures has been a topic of research for many years and have found widespread applications in

the field of NDE [11]. Similar to other problems in electromagnetics, such as EM scattering

problem, eddy current NDE problems can also be solved by a number of methods which in-

cludes analytical and semi-analytical methods, approximation methods and numerical methods.

Except for a few of special configurations, analytical solutions usually can only be found for

unflawed canonical geometries, which are widely used in calculation of the incident field for

the probe-flaw interaction modeling [24, 25, 26, 27, 9]. Although semi-analytical solutions are

achievable for certain structures with ideal cracks by applying some simplifying approximations,

such as TREE method [14, 15] and thin-skin approximation at high frequency [16, 17], it is ex-

pedient to seek numerical approximations of the probe signals and electromagnetic fields since

numerical methods are more flexible to handle general probe-flaw interaction problem. Finite

element methods (FEM) tend to be more general but expensive in computational resources due

to requirement of discretization of the whole domain of interest. In contrast, integral equation

methods have attracted more and more attention due to the fact that we only need discretiza-

tion of the flaw region which means much fewer unknowns and faster calculations. It is more

efficient because that the dyadic Green’s kernels G(r, r′) in integral equations automatically

account for the boundary conditions at the interfaces of a part.

A brief literature review of forward eddy current NDE problems is presented in this chapter.

It mainly covers two important modeling categories, namely the probe field and interaction

with flawless structures and the probe-defect interaction. Finally a survey of EC modeling in

ferromagnetic material is summarized.
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2.1 Modeling of Probe Field and Interaction with Flawless Structures

The analysis of air-cored circular induction coil fields and their interaction with conductive

plates and circular rods or the corresponding planar and cylindrical layered systems are studied

to serve as the basis for the theory of induced current and its sensor applications. An important

motivation for the analysis is to produce formula that are widely available for fast and accurate

calculations and which can be easily embedded in codes that predict results for a variety of

configurations. At an early stage in these developments, analytical formula were found for the

field and impedance of a circular coil whose axis is normal to the surface of a planar plate and a

coil coaxial with a circularly cylindrical conductor by Dodd and Deed [9]. The same method was

later extended to planar multi-layered structure [28, 29] and cylindrical multi-layered structures

[30].

Following these early results, expression have been derived for the field of a circular air-

cored coil of rectangular cross section with its axis parallel to the surface of a homogeneous

conducting half space by Burke [31]. And the closed-form expression results were also compared

with the thin-skin approximation results. The effect of an eddy current bobbin coil probe with

its axis parallel to that of a tube has been analyzed by Thedodulidis [32]. Later, the impedance

and fields of a rotary coil whose axis is perpendicular to that of a borehole was derived [33].

This work shows the rotary coil might provide more accurate information about crack in the

circumferential direction of the borehole compared with conventional bobbin coil. A closed-

form expression for an arbitrary tilted coil above a plate was provided for better understanding

the noise due to the unexpected tilt of probe in the inspection [34]. Recently a solution for the

case of a circular coil whose axis is arbitrary with respect to the axis of a tube or hole has also

been derived in terms of spherical coordinate system [24].

The TREE method was widely applied in EC modeling problems to simplify the problem

by applying artificial boundary conditions [35, 36]. Using this method, the formulation of the

calculation of eddy currents in a cylindrical conductive rod of finite length due to a coaxial

circular coil was derived by Bowler [37]. Then the same idea was applied to layered rod [38]

and finite length hole [39]. Later the analytical solution in series form for the electromagnetic
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field of a cylindrical eddy current probe coil near the open end of a borehole in a conductor

was provided accounting for edge effects by using TREE method [40].

The theory of the circular coil interaction with right-angled conductive wedge was proposed

by Theodoulidis [15]. By using the TREE method, an alternative solution was provided [41].

This work can give a better understanding of the edge fields and forms the basis for further

solutions of edge-related problems containing corner cracks. Later, a closed-form expression for

the impedance of a tangential eddy-current coil in the presence of an infinite arbitrary angle

conducting wedge was derived [42]. The results of three specific angles, namely quarter-space,

225 degrees and semi-infinite conducting sheet, were presented. Evaluation of the probe field

of some complicated air-cored probe, say rectangular-shaped probe [43, 44], elliptical-shaped

probe [45, 46], curved rectangular spiral coil [47] and so on, have also been reported. Apart

from the air-cored coil, the analytical models of a ferrite-cored coil used as an eddy current

probe were also developed [48, 49, 50].

The numerical methods, mainly finite difference, the finite element method (FEM), method

of moments and hybrid, are also adopted to evaluate EC solutions [51, 52, 53]. The advantage

of the numerical methods are the flexibility to handle any structure regardless of geometri-

cal shape, material inhomogeneity and shape of coil. Finite difference method was the only

available numerical method at the early stage of development of numerical methods. Later,

FEM and moment method are now the most widely used methods. However FEM is usually

expensive in computational resources due to requirement of discretization of the whole domain

of interest and moment method requires Greens’ functions, which usually are not available for

complex structures.

2.2 Modeling of Probe-Flaw Interaction

The probe-flaw interaction problem is much more difficult particularly when it aims to treat

arbitrary flaws and cracks. Except for certain simple structures with ideal cracks [54], analytical

solutions are not usually accessible. In order to meet the demand of solving the general probe-

flaw interaction problem, numerical methods are used. A brief review of analytical method and

numerical methods for eddy current probe-flaw modeling are presented in this section.
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2.2.1 Analytical and Semi-analytical Methods of Structures with Simplifying Crack

The close-form solution for the crack problem is only available in some cases, such as an

infinite long cylinder containing a radial surface crack [54]. However, semi-analytical solutions

are accessible for more general structures with ideal cracks by applying some idealized approx-

imations, such as the TREE method, the thin-skin approximation at high frequency and the

thick-skin approximation.

By using the TREE method, the interaction between a long coil and a long slot with a

rectangular cross section in a conductive plane and was studies by Theodoulidis and Bowler

[15]. Similarly, the solution for a rectangular cross-section circular coil above a conductive

plate with a coaxial hole was provided [55]. With the thin-skin approximation, namely the

assumption that the skin-depth is much smaller than the length and depth of the flaw, the

solution of a normal coil over a surface-breaking crack in the conductor was presented by

Bowler and Harfield [56, 16, 17]. In the thick-skin approximation, the surface-breaking crack

or EDM notches was modeled by a thin ellipsoidal void located at the specimen surface or

modeled by using the hydrodynamic flow analogy [11].

2.2.2 Numerical Methods

In recent years, a remarkable expansion of the applications of numerical methods to EC

NDE has occurred due to its flexibility to manipulate many complicated structures and flaws

rather than the canonical structures that can be dealt with using analytical solution. Two of

the most popular numerical approaches today used in the EC NDE field are the FEM and

the method of moments (MoM). For example, a computational model of ferrite-cored probe by

using MoM based on volume integral equations was proposed by Bowler [57]. In this model,

the EM field and impedance of probe is obtained by finding the magnetization of the ferrite

core in the presence of homogeneous or even anisotropic layered specimen. The MoM is used

to approximate the integral equations and conjugate gradient method is adopted to solve the

matrix equations. Due to the requirement of very fine mesh, which means more unknowns,

when the skin-depth is very small in the conductor, the finite difference method (FDM) is now
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rarely used in the eddy current modeling. In this dissertation, we will focus on the discuss of

the FEM and MoM.

2.2.2.1 Finite Element Method

FEM is a numerical technique for solving boundary-value problems for partial differential

equations. In the early 1960s, FEM was first used by engineers to approximate solutions of

problems in stress analysis, fluid flow and other areas. Compared with MoM, it’s subject to

less fundamental limitations and is available in several computer tools provided with a versatile

graphical user interface (GUI) and comprehensive user manuals [58]. The first attempt to use

FEM to solve the eddy current problem date back to 1970s [59]. In the 1980s, intense studies

and research was conduced many researchers [60, 61]. The finite element analysis of 3-D

eddy current was presented by O.Biro [52]. This work reviews various magnetic and electric

potential formulations of eddy current problems and necessary gauging conditions are used to

ensure the uniqueness of the solution. A coupled FEM-BEM solution for solving a EC problem

was presented by Fetzer [62]. This work shows that representation of the surrounding air with

boundary elements could greatly reduce the computational effort.

Similar to FDM, FEM also tends to consume too much computational resource due to a

large number of elements needed to discretize the whole solution domain. In order to increase

the efficiency of solving the large matrix equations generated by FEM, an efficient technique

was proposed by Nakata et al [63].

2.2.2.2 Method of Moments

Method of moments was first introduced into electromagnetic field computations to solve

antenna and scattering problems [64]. Like the pulse response used in signal and system anal-

ysis, the Green’s functions have to be derived first for a specific source and object structure.

Although limited to a particular geometry, the advantage of such models is that their compu-

tational cost is low and accuracy relatively easy to control. This is because the kernels involved

in the method embody the interface conditions of the part geometry, only the flaw region is ren-

dered in discrete form and this region is usually very small, Consequently only a few unknowns
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are needed to compute the source density via the moment method which results in very fast

calculations [65]. The disadvantage of the approach, at present, is that it can only be used for

canonical structures for which it is relatively simple to obtain the analytical expression of the

Green’s function. However, from modeling point of view, many practical EC NDE problems

can be represented as simple structure models, such as planar-layered structure, whose Green’s

function is available. Furthermore, even if the structure is complicated, the Green’s function

can also be obtained via numerical method saved as value table.

In tackling the problem using an MoM, the formulation could be expressed as either a

surface or volume integral and its corresponding methods are the boundary element method

(BEM) and the volume boundary element method (VEM).

BEM was proposed to solve a 2-D eddy current problem by Rucker et al [66]. Later, surface

integral equations were developed for EM fields on the surface of a 3-D flaw in a conducting

medium for EC NDE application by Beissner [67]. By using BEM, a matrix equation for

tangential current density and magnetic field vectors on the flaw surface was obtained. The

eddy current field on the 3-D rectangular slot was calculated and presented. The eddy current

interaction with an general ideal crack having a negligible opening and acting as a barrier to

electric current was studied via the boundary integral formulation by Bowler [68]. Based on

this rapid numerical procedure, a inverse problem for reconstructing the flaw shape and size

might be possible. The impedance boundary condition was adopted to do the eddy current

analysis by Ishibashi [69]. In order to increase the efficiency, the fast multipole method was

introduced to BEM in 2-D EC problem by Song [70].

VEM is also an efficient way to deal with a surface-breaking crack problem [71] but also

the problem of an embedded flaw in the conductor [72]. The volume integral method has been

used in geophysics applications by Weidelt [73] and was applied to EC problem by Dunbar

[74, 75]. The correlation between the model prediction and experiment was of poor quality

due to numerical problem encountered in evaluation of unperturbed field and singularities.

These problems were then overcome by McKirdy [76] by calculating the singular integral more

accurately and using Hankel transform to get the incident field . The conjugate gradient method

was incorporated to solve the matrix equation based on VIE by Bowler [57]. The volume integral
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equation method was also adopted to analyze 3-D nonlinear eddy current problems in induction

heating [77]. A new discretization schemes based on non-uniform B-splines was proposed for

solving EC problem via VIE by Dular [78]. Recently, the eddy current calculations on a right-

angled corner cracks was solved efficiently by using VEM and an approximate Greens function

for a conductive quarter-space by Bowler [14]. Also, the eddy current probe due to cracks in

fastener holes was studied by using both BEM and VEM [19].

Green’s function is a key part for the MoM and many derivation of Green’s functions were

done for specific structures. The Green’s function of the half-space conductor was derived by

Bowler [79] and the corresponding time domain dyadic version was also provided in 1999 [80].

These Green’s functions were also used in the implementation of MoM for half-space conductor

[22] and the numerical implementation details were studied [81]. Later, the Green’s function

for a plate was sought by Bowler [82] and that due to alternative current was also provided

[83]. The Green’s kernel for a long tube was derived by Barlow [84]. In order to increase the

efficiency of evaluation of Green’s function, an efficient method to calculate dyadic Green’s

function of an eddy current field in a conducting plate was proposed by Xing [85].

2.3 Modeling of the Ferromagnetic Conductors

Modeling of flaws in ferromagnetic conductors has been developed by using FEM or integral

equation methods. For example, the overlapping FEM was implemented for EC problem of

ferromagnetic media to take into account of skin effect [86]. This section will mainly present a

review related to the integral equation method.

Integral equation models of planar and cylindrical structures with flaws has been developed

using the volume and boundary element method [18, 19, 20, 21, 22]. However, to the best

of our knowledge, most of these models are developed for non-magnetic metals. The reasons

might be the high burden of the calculation of the dyadic Green’s kernels and the challenge

of experiments. It is, however, of general interest to develop a model which can account for

effects of both permeability changes and conductivity changes.

The theory of circular eddy current probe interactions with long surface cracks in ferro-

magnetic steel was developed by Harfield and Bowler [87, 88]. In this work, the thin-skin
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approximation was used and the crack was assumed to be infinite long. EM fields on the crack

faces were described in terms of a potential which satisfies a 2-D Laplace equation. A numerical

model based on a nonlinear integral equation for EC problem was proposed to simulate the EM

field in ferromagnetic steel parts by Ioan [23]. The edge element and vectorial volume elements

were involved in the discretization. However, few details are provided about the key steps such

as dealing with hyper-singularity.

A VIE formulation for ferromagnetic tube structures with volumetric defects was developed

by Skarlatos et al [21]. According to the volume equivalence theorem [89], flaws was represented

in effect as equivalent electric and magnetic dipole distributions that depends on the total field

in the flaw region. The dyadic Green’s functions of multi-layered cylindrical structures were also

presented by using the derivation by Chew [90]. Some numerical implementation issues such

as the precondition of matrix equation were also discussed. But few details are provided about

dealing with hyper-singularity. The comparison between theoretical results and experimental

results were presented and discussed. The agreement between theoretical prediction and test

data was not good and part of the reason might be that it’s difficult to get good experiment

data due to local variations of the magnetic permeability in the region of the flaw and the effect

of heating or mechanical tension during manufacture.
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CHAPTER 3. VOLUME INTEGRAL EQUATION AND

FORMULATIONS

3.1 Electromagnetic Fundamentals

The well-known Maxwells equations in differential form are expressed as follow

∇×E(r, t) = −∂B(r, t)

∂t
−M(r, t) (3.1)

∇×H(r, t) =
∂D(r, t)

∂t
+ J(r, t) (3.2)

∇ ·B(r, t) = ρm(r, t) (3.3)

∇ ·D(r, t) = ρe(r, t) (3.4)

All these quantities here are assumed to be time-varying, and each is a function of the space

coordinates and time. E, H are the electrical and magnetic field intensity. D and B are the

electrical and magnetic flux density. ρe and ρm are the electric and magnetic charge density. J

and M are the electric and magnetic current density. Maxwell’s equations are the fundamentals

of modern wireless communication, RF/Microwave components and circuit design [91]. Unlike

the integral-form Maxwells equations which are valid everywhere, the differential Maxwells

equations describe field behavior at a point in a continuous medium [92]. As the frequency is

relative low (usually less than 10MHz) in eddy-current applications, the displacement current is

very small so that it can be ignored and this approximation is called quasi-static approximation.

We analyze the time-harmonic fields and can, if needed, determine the transient field using

the Fourier transform, (3.5) . By using the Fourier Transform, the time-varying Maxwell’s

equations can be written as the followings in the frequency domain [92]

F(r, t) =
1

2π

∫ ∞
−∞

F̃(r, ω)e−iωtdω (3.5)
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∇×E(r, ω) = iωB(r, ω)−M(r, ω) (3.6)

∇×H(r, ω) = −iωD(r, ω) + J(r, ω) (3.7)

∇ ·D(r, ω) = ρe(r, ω) (3.8)

∇ ·B(r, ω) = ρm(r, ω) (3.9)

A medium usually has a significant effect on EM fields and affects it through three phenom-

ena, namely electric polarization, magnetization and electric conduction. In order to include

these effects for linear materials, the constitutive relations are introduced shown as follow

D = εE (3.10)

B = µH (3.11)

J = σE (3.12)

where ε, µ and σ are expressed in tensor form. If the medium is isotropic, the material

properties will be expressed in scalar form. Based on whether the medium is dispersive and/or

inhomogeneous, materials properties can be functions of frequency and position.

The differential form of Maxwell’s equations are valid at any point in a continuous medium

but not at the interfaces between different media. The remedy to it is to get the boundary

conditions which describes the relations between the fields on the two sides of an interface based

on integral form Maxwell’s equations.

[Bn] = ρms (3.13)

[Dn] = ρes (3.14)

[Ht] = Js (3.15)

[Et] = Ms (3.16)

Note that the notation [.] stands for the jump of the quantity at the interface. The subscript

n means the surface normal component and t means the surface tangential component. ρms,

ρes, Js and Ms are the surface magnetic charge density, electric charge density, surface current
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density and magnetic current density. For eddy-current case, the conductivity of conductor are

finite, the Js vanishes. Up to now, ρms and Ms are not found so they can also be set as zero.

Based on the Maxwell’s equations and mathematical manipulations, we can derive some

important theorems that reveal certain important properties of electromagnetic fields. The

uniqueness theorem, which establishes the conditions for a unique solution of Maxwell’s equa-

tions, and the reciprocity theorem, which establishes a relation between two solutions due to

two different sources, are the most important two theorems. Since these two theorems and

some other theorems such as equivalence theorem, image theory are thoroughly discussed in

many literature and books [89, 90, 92, 93, 94, 95, 96, 97], we will not discuss these in this

dissertation.

3.1.1 Understanding of Skin Depth δ

We know the plane wave with a constant amplitude A can be expressed in the form Aeik·r.

k is the wave number with magnitude k. In the highly conductive medium, we have

k ≈
√
iωµ0σ0 = i(α− iβ) (3.17)

where α accounts for the attenuation and β accounts for the phase changing. µ0 is the perme-

ability of medium and σ0 is medium conductivity. Then we have

α = β =
√
πfµ0σ0 (3.18)

The skin depth is defined as

δ =
1

α
=

1√
πfµ0σ0

(3.19)

If the wave is propagating in z direction, we obtain

eik·r = e−αzeiβz = e−
1
δ
zei

1
δ
z (3.20)

In the MoM calculation for the free space or good dielectric case, 10-12 unknowns per

wavelength are usually enough for reasonable accuracy. However, for eddy current problem, we

prefer to use the metric based on skin depth δ due to the high attenuation in lossy conductor.
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In lossless medium problem, the phase shift is 2π per wavelength. In the conductive region,

the phase shift is 1 rad per δ. Hence we can estimate about 2 unknowns for one rad or δ.

10 ∼ 12

2π
≈ 2 (3.21)

which implies 2 unknowns per skin depth is usually enough for eddy-current numerical calcu-

lation.

3.2 Dyadic Green’s Function

Before we introduce the concept of dyadic green functions, we would like to review Maxwell’s

equations in a dyadic form first[96]. The medium under consideration is assumed to be linear,

isotropic and homogeneous media with the permeability µ, conductivity σ and permittivity ε.

A vector function or a vector quantity in coordinate system is defined as

F =

3∑
i=1

Fix̂i (3.22)

where x̂i, i = 1, 2, 3 denotes the unit normal vectors of specific coordinate system, such as

x̂, ŷ, ẑ of Cartesian coordinate system and ρ̂, φ̂, ẑ of cylindrical coordinate system. Fi is

the corresponding components in the coordinate system. From now on, the summation index

always runs from 1 to 3 unless specified otherwise. The number 3 above the summation symbol

can be eliminated like

F =
∑
i=1

Fix̂i (3.23)

Now we consider three distinct vector functions denoted as

Fj =
∑
i

Fij x̂i, j = 1, 2, 3 (3.24)

Then a dyadic function or a dyad, denoted by F, can be expressed as

F =
∑
j

Fj x̂j =
∑
i

∑
j

Fij x̂ix̂j =


F11 F12 F13

F21 F22 F23

F31 F32 F33

 (3.25)

by juxtaposing three vectors. Note that the order of Fj and x̂j must be kept. Fj are the vector

components of dyadic F. The order of x̂ix̂j are usually not commutative except for the case

with i = j.
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3.2.1 Dyadic Green Functions with Electric Source

We assume there are three sets of harmonically fields with same frequency and in the

same environment which are produced by three distinct electric current distributions Jj with

j = 1, 2, 3.

∇×Ej = iωµHj (3.26)

∇×Hj = Jj − iωεEj (3.27)

∇ ·Dj = ρe,j (3.28)

∇ ·Bj = 0 (3.29)

We put all three sets of Maxwell’s equations together and replace the quantities by dyadic form.

Then all equations are transferred into dyadic forms as follow

∇×E = iωµH (3.30)

∇×H = J− iωεE (3.31)

∇ ·D = ρe (3.32)

∇ ·B = 0 (3.33)

Similarly, we get the continuous condition in dyadic form as follow

∇ · J = iωρe (3.34)

Let us now consider three current distributions with amplitude cj

Jj = cjδ(r− r′)x̂j (3.35)

which satisfies
∫∫∫

Jjdv = cj x̂j . Here we normalize the current moment by applying iωµcj = 1.

iωµJ = Iδ(r− r′) (3.36)

By using continuous equation and dyadic identity ∇ · (If) = ∇f , we obtain

ρe =
1

iω
∇ · J =

−1

ω2µ
∇ ·
(
Iδ(r− r′)

)
=
−1

ω2µ
∇δ(r− r′) (3.37)
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where I is unit dyad. Here we define the dyadic Green’s kernels by doing the following replace-

ment [96]

E = Gee (3.38)

iωµH = Gme (3.39)

where Gee and Gme are the dyadic Green’s functions. The first letter of subscript stands for the

field quantities and the second one indicates the source kind. For example, Gee indicates the

electric field due to electric source. The dyadic Maxwell’s equations are rewritten as

∇× Gee = Gme (3.40)

∇× Gme = Iδ(r− r′) + k2Gee (3.41)

∇ · Gee =
−1

k2
∇δ(r− r′) (3.42)

∇ · Gme = 0 (3.43)

Eliminating the Gme , we get

∇×∇× Gee(r, r′)− k2Gee(r, r′) = Iδ(r− r′) (3.44)

Similarly, we have

∇×∇× Gme − k2Gme = ∇δ(r− r′)× I (3.45)

by eliminating the Gee, where k2 = ω2µε. For quasi-static case k2 = iωµσ, which is widely used

in eddy-current nondestructive evaluation area. Note that we can also get Gme by using

∇× Gee = Gme (3.46)

For unbounded domain, we get

Gee =

(
I +

1

k2
∇∇

)
G0(r− r′) (3.47)

Gme = ∇× Gee = ∇G0 × I (3.48)

where G0 is the free space Green’s function which satisfies

(∇2 + k2)G0 = −δ(r− r′) (3.49)

Note that the identity ∇×∇F = 0 is applied in the derivation.
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3.2.2 Dyadic Green Functions with Magnetic Source

Similarly, we assume there are three sets of harmonically fields with same frequency and in

the same environment which are produced by three distinct magnetic current distributions Mj

with j = 1, 2, 3. we get the dyadic form Maxwell’s equation as

∇×E = iωµH−M (3.50)

∇×H = −iωεE (3.51)

∇ ·D = 0 (3.52)

∇ ·B = ρm (3.53)

and the continuous condition in dyadic form as

∇ ·M = iωρm. (3.54)

Let us now consider three current distributions Mj = cjδ(r − r′)x̂j with amplitude cj . We

normalize the current moment with iωεcj = 1. Then we have

M =
Iδ(r− r′)

iωε
(3.55)

ρm =
1

iω
∇ ·M =

−1

ω2ε
∇ ·
(
Iδ(r− r′)

)
=
−µ
k2
∇δ(r− r′) (3.56)

By applying replacement with

− iωεE = Gem (3.57)

H = Gmm (3.58)

we obtain

∇× Gem = k2Gmm + Iδ(r− r′) (3.59)

∇× Gmm = Gem (3.60)

∇ · Gem = 0 (3.61)

∇ · Gmm =
−1

k2
∇δ(r− r′) (3.62)
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where Gem and Gmm are the dyadic Green’s functions due to magnetic source. By eliminating

the Gem or Gmm, we have

∇×∇× Gmm(r, r′)− k2Gmm(r, r′) = Iδ(r− r′) (3.63)

∇×∇× Gem − k2Gem = ∇δ(r− r′)× I (3.64)

We also can get Gem by ∇× Gmm = Gem

For unbounded domain, we have

Gmm =

(
I +

1

k2
∇∇

)
G0(r− r′) (3.65)

Gem = ∇G0 × I (3.66)

3.3 Volume Integral Equation for a Layered Medium with a Flaw

1

z=z’

2

...

j

...

N

z

µ  ε
1     1

µ  ε
2     2

µ  ε
j      j

µ   ε
N     N

Figure 3.1: Planarly multilayered medium with flaws in layer j

We consider a planarly layered medium consisting of finite number linear, isotropic and

homogeneous layers Fig. 3.1. µi and εi are the magnetic permeability and permittivity of the

layer i medium. An external source (for example eddy-current coil in EC NDE) carrying a

time-harmonic current varying as the real part of Ie−iωt is used to detect the flaw in layer

j. The flaw is finite support and fully contained in layer j with local µ(r) and ε(r) variation.

In accordance with the volume equivalent theorem [89], one defines equivalent electric and



www.manaraa.com

25

magnetic dipole densities as equivalent magnetic current source and electric current source as

follows.

M = −iω[µ(r)− µj ]H (3.67)

J = −iω[ε(r)− εj ]E (3.68)

where µj and εj are the host permeability and permitivity of the layer j medium where flaw

lies in. Based on classical scattering theory, the total field can be separated into two parts,

namely the incident field caused by out-impressed sources without flaw and the scattering field

caused by the equivalent M and/or J due to flaw as

E = E0 + Es (3.69)

H = H0 + Hs (3.70)

where the subscript 0 denotes the incident field and the subscript s denotes the scattering field

or perturbed field. The scattered fields will satisfy the following equations in the layer i

∇×Es = iωµiH
s −M (3.71)

∇×Hs = −iωεiEs + J (3.72)

Both are only non-zero in the flaw region. By taking a curl on the above equations, we have in

the layer i

∇×∇×Es − k2
iE

s = iωµiJ−∇×M (3.73)

∇×∇×Hs − k2
iH

s = iωεiM +∇× J (3.74)

where k2
i = ω2µiεi. By applying Green’s second theorem to the (3.73), (3.74) and imposing

boundary conditions of electric and magnetic fields at the interfaces and radiation condition at

infinity [96, 21], the total electric field and magnetic field can be expressed as volume integral

equations in terms of dyadic Green’s functions

Es = iωµj

∫
Vf

Gijee(r, r′) · J(r′)dv′ − εj
εi

∫
Vf

Gijem(r, r′) ·M(r′)dv′

= ω2µj

∫
Vf

Gijee(r, r′) · [ε(r)− εj ]Ej(r
′)dv′ + iω

εj
εi

∫
Vf

Gijem(r, r′) · [µ(r)− µj ]Hj(r
′)dv′

(3.75)



www.manaraa.com

26

Hs = iωεj

∫
Vf

Gijmm(r, r′) ·M(r′)dv′ +
µj
µi

∫
Vf

Gijme(r, r′) · J(r′)dv′

= ω2εj

∫
Vf

Gijmm(r, r′) · [µ(r′)− µj ]Hj(r
′)dv′ − iωµj

µi

∫
Vf

Gijme(r, r′) · [ε(r′)− εj ]Ej(r
′)dv′

(3.76)

The superscript ij of G indicates the field in layer i due to a source in layer j. Vf denotes the

flaw region where the integration is performed. Note that the following reciprocity relationships

of dyadic Green’s functions [96] are used in the derivation.

1

µi
Gijee(r, r′) =

1

µj

[
Gjiee(r′, r)

]T
(3.77)

1

εi
Gijmm(r, r′) =

1

εj

[
Gjimm(r′, r)

]T
(3.78)

where the superscript T denotes the transpose of matrix.

The dyadic kernels satisfy

∇× Gijee = Gijme (3.79)

∇× Gijme = k2
i Gijee + δijIδ(r− r′) (3.80)

for the electric current source.

∇× Gijmm = Gijem (3.81)

∇× Gijem = k2
i Gijmm + δijIδ(r− r′) (3.82)

for the magnetic current source.

∇×∇× Gijee(r, r′)− k2
i Gijee(r, r′) = δijIδ(r− r′) (3.83)

∇×∇× Gijme − k2
i Gijme = δij∇δ(r− r′)× I (3.84)

δij = 1 only when i = j, otherwise it’s vanished.

In order to apply the MoM, we always set the observation point and source point in the

same layer, here is the flaw region Vf . Then i = j will be applied. For simplicity, we will drop

the layer index.

Es = iωµh

∫
Vf

Gee(r, r′) · J(r′)dv′ −
∫
Vf

Gem(r, r′) ·M(r′)dv′

= ω2µh

∫
Vf

Gee(r, r′) · [ε(r′)− εh]E(r′)dv′ + iω

∫
Vf

Gem(r, r′) · [µ(r′)− µh]H(r′)dv′
(3.85)
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Hs = iωεh

∫
Vf

Gmm(r, r′) ·M(r′)dv′ +

∫
Vf

Gme(r, r′) · J(r′)dv′

= ω2εh

∫
Vf

Gmm(r, r′) · [µ(r′)− µh]H(r′)dv′ − iω
∫
Vf

Gme(r, r′) · [ε(r′)− εh]E(r′)dv′
(3.86)

where µh and εh are the permeability and permittivity of the flaw host layer j. Note that both

Eq.(3.85) and Eq.(3.86) are coupled by Maxwell’s equations. Hence it’s possible to express the

electric field in terms of magnetic field so as to reduce the unknown and decouple the integral

equations. By using Maxwell’s equation within flaw region, we know the electric field and

magnetic field will satisfy the following relationship

∇×E = iωµ(r)H (3.87)

Then we can rewrite Eq 3.67 and 3.68

M = −µ(r)− µh
µ(r)

∇×E =
µ(r)− µh
iωµ(r)

∇× J

ε(r)− εh
(3.88)

J = −iω[ε(r)− εh]E (3.89)

Then the coupled integral equations become decoupled shown as follow

Es = ω2µh

∫
Vf

Gee(r, r′) · [ε(r′)− εh]E(r′)dv′ +

∫
Vf

µ(r′)− µh
µ(r′)

Gem(r, r′) · ∇′ ×E(r′)dv′ (3.90)

By using integration by parts∫
V

A · ∇ × Bdv =

∫
V
BT · ∇ ×Adv =

∫
V
∇×A·Bdv (3.91)

where B is a dyad. The ∇′× in the second term can be moved to the dyadic kernel. Then

the basis function of E doesn’t need to be high order. Besides, the required unknowns can

be half due to that two coupled integral equations reduce to one. The similar idea has been

implemented for free space via surface integral equations [98].

3.3.1 Volume Integral Equation for Eddy-current Application in the Quasi-static

Limit

For the eddy current application, the working frequency is usually relatively low (usually

< 10 MHz), the displacement current is always negligible compared with the conductive current.
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Hence the quasi-static approximation is applied by using −iωε ⇒ σ. Then we rewrite the

equivalent source as

M = [µ(r)− µh]H

P = [σ(r)− σh]E

(3.92)

µh and σh are the host permeability and conductivity of the layer j medium where flaw lies in.

The Faraday’s law, Ampere law and vector wave equations are modified as

∇×E(r) = iω [µhH(r) + M(r)] (3.93)

∇×H(r) = σhE(r) + P(r) (3.94)

∇×∇×E− k2
hE = iω[µhP +∇×M] (3.95)

∇×∇×H− k2
hH = ∇×P + iωσhM (3.96)

Meanwhile, the volume integral equations become

E = E0 + iωµh

∫
Vf

Gee(r, r′) ·P(r′)dv′ + iω

∫
Vf

Gem(r, r′) ·M(r′)dv′ (3.97)

H = H0 +

∫
Vf

Gme(r, r′) ·P(r′)dv′ + iωσh

∫
Vf

Gmm(r, r′) ·M(r′)dv′ (3.98)

In order to apply MoM, the above integral equations can be transformed into an equation only

in terms of the electric current density P and magnetic density M directly by defining the

coefficients

vE(r) =
σ(r)− σh

σh
(3.99)

vH(r) =
µ(r)− µh

µh
(3.100)

and multiplying them individually to Eq. (3.97) and (3.98). Then we obtain

P = P0 + k2
hvE(r)

∫
Vf

Gee(r, r′) ·P(r′)dv′ + k2
h

vE(r)

µh

∫
Vf

Gem(r, r′) ·M(r′)dv′ (3.101)

M = M0 + µhvH(r)

∫
Vf

Gme(r, r′) ·P(r′)dv′ + k2
hvH(r)

∫
Vf

Gmm(r, r′) ·M(r′)dv′ (3.102)
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We can find both integral equations are coupled. Once getting electric current dipole density

P and magnetization vector M, the impedance change of the eddy current coil probe due to

the flaw can be given by

∆Z = − 1

I2

∫
Vf

[E0 ·P + iωH0 ·M]dv (3.103)

based on reciprocity relationship [89] [11].

3.3.2 Matrix Approximation of Volume Integral Equations

An operator in an infinite-dimensional space is difficult to compute. Hence we always need

to reduce an operator into an approximate, finite-dimensional matrix operator by finding its

matrix representation[93]. Given an operator equation

Lf = g (3.104)

where f and g are functions, we can choose a set of linearly independent vectors or functions

denoted as {bn(r), n = 1, 2, 3, ...N} to as the basis functions. Then we can approximate f(r)

f(r) ≈
N∑
n=1

fnbn(r) (3.105)

DN = span{bn(r), n = 1, 2, 3, ...N} is a space that approximates the original domain space

D(L) of operator L. If L is a differential operator, then f is nonunique unless BCs are spec-

ified. Substituting Eq. (3.105) into Eq. (3.104) and multiply the testing/weighting function

{tm(r),m = 1, 2, 3, ...N}, then integrate to obtain

N∑
n=1

fn < tm,Lbn > =< tm, g >, m = 1, 2, 3, ...N (3.106)

In order for Eq. (3.104) to have a solution, g must be in the range space R(L). If RN =

span{tm(r),m = 1, 2, 3, ...N} is a good approximation to R(L). Then Eq. (3.106) is a good

approximation equation of Eq. (3.104). Then we obtain the matrix equation

[L] · f = g (3.107)
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where

[L]mn = Lmn =< tm, Lbn > (3.108)

[f ]n = fn (3.109)

[g]n =< tn, g >= gn (3.110)

In this dissertation, Moment method is used to obtain the numerically approximation of the

source densities and a pulse-basis point-matching scheme is adopted based on the trade-off

between coding-simplicity and accuracy [99, 100]. The point matching is applied at the center

point of each element cell. We assume the whole problem domain can be meshed into total

N brick cells. In a specific cell g, The basis function can be defined as P̃g(r) = 1 only if

r ∈ Vg and P̃g(r) = 0 for elsewhere. Then electric dipole and magnetic dipole densities can be

approximated as

P(r) '
N∑
g=1

Pg(r)P̃g (3.111)

M(r) '
N∑
g=1

Mg(r)P̃g (3.112)

Substituting these two equations into (3.101), (3.102) and do the point-matching at the center

point of each cell, we have the matrix equation I−Aee Aem

Ame I−Amm

 ·
 P̄

M̄

 =

 P̄ 0

M̄0

 (3.113)

where I is the unit matrix with the size 3N × 3N . A specific matrix dyadic element of row q

and column g is evaluated by

[Aee]qg = k2
hvE(rq)

∫
Vg

Gee(rq, r′)dv′ (3.114)

[Aem]qg = −k2
h

vE(rq)

µh

∫
Vg

Gem(rq, r
′)dv′ (3.115)

[Ame]qg = −µhvH(rq)

∫
Vg

Gme(rq, r′)dv′ (3.116)

[Amm]qg = k2
hvH(rq)

∫
Vg

Gmm(rq, r
′)dv′ (3.117)
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where q, g ∈ {1, 2...N}. P̄ , M̄ are the column vectors of unknowns. P̄ 0, M̄0 are the column

vectors determined by incident fields in the flawless material. Once the P̄ and M̄ have been

calculated, the impedance changes of the excitation coil probe due to the flaw, ∆Zc, can be

determined from the relationship

I2∆Zc ≈ −∆v
(
Ē0 · P̄ + iωH̄0 · M̄

)
(3.118)

where ∆v is the element volume and the cells are assumed the same size.

Note that since the conductivity is usual much larger than permeability. it might cause

the magnitudes of Aem, Ame differ by several orders and then produce stiff matrix. The

precondition process might be needed in order to equilibrate the system and make sure the

matrix well-condition[21, 101]. For example, the following VIEs

E0 = E− iωµh
∫
Vf

Gee(r, r′) ·P(r′)dv′ − iω
∫
Vf

Gem(r, r′) ·M(r′)dv′ (3.119)

H0 = −
∫
Vf

Gme(r, r′) ·P(r′)dv′ + H− iωσh
∫
Vf

Gmm(r, r′) ·M(r′)dv′ (3.120)

can be modified as

E0 = E− k2vE

∫
Vf

Gee(r, r′) ·E(r′)dv′ − iω (µ(r)− µh)
1

Zc

∫
Vf

Gem(r, r′) · ZcH(r′)dv′ (3.121)

ZcH
0 = − (σ(r)− σh)Zc

∫
Vf

Gme(r, r′) ·E(r′)dv′ + ZcH− k2vH

∫
Vf

Gmm(r, r′) · ZcH(r′)dv′

(3.122)

Then the matrix form are I−Aee 1
Zc

Aem

ZcA
me I−Amm

 ·
 Ē

ZcH̄

 =

 Ē0

ZcH̄
0

 (3.123)

where Zc =
√
µh/εh ≈

√
−iωµh/σh

[Aee]qg = k2
hvE(rq)

∫
Vg

Gee(rq, r′)dv′ (3.124)

[Aem]qg = −iω [µ(rq)− µh]

∫
Vg

Gem(rq, r
′)dv′ (3.125)

[Ame]qg = − [σ(rq)− σh]

∫
Vg

Gme(rq, r′)dv′ (3.126)

[Amm]qg = k2
hvH(rq)

∫
Vg

Gmm(rq, r
′)dv′ (3.127)
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3.4 Dyadic Green’s Kernels of a Layered Medium

A derivation of the dyadic kernels dedicated to a layered geometry is based on a decom-

position of the electromagnetic field into transverse electric (TE) scalar potential, ψ1, and

transverse magnetic (TM) scalar potential, ψ2, with respect to the z-direction. Since we are

dealing with a linear system, we can do the derivation simply by considering the TE and TM

potentials that arise from one type of source at a time.

Assuming only electric dipole density P exists, the magnetic field has zero divergence and

can therefore be written in terms of TE and TM potentials

H = ∇×∇× (ẑψ1) + k2
h∇× (ẑψ2) (3.128)

where k2
h = iωµhσh. Substituting (3.128) into (3.96) then taking the ẑ· and ẑ · ∇× operation

to it separately gives

(∇2 + k2
h)∇2

t

 ψ1

ψ2

 =

 ẑ · ∇ ×P

1
k2h
ẑ · ∇ ×∇×P

 (3.129)

The electric field with the presence of the dipole density P can be found by taking the curl

of (3.128) and applying (3.94), (3.129) and written in the following form that ensures ∇ ·E =

−∇ ·P/σh required by (3.95).

E = iωµh[∇× (ẑψ1) +∇×∇× (ẑψ2)]− 1

σh

(
ẑẑ +

∇t∇t
∇t2

)
·P (3.130)

Note that this electric representation is even valid in the source region [19].

For the case with only magnetic dipole density M, a similar procedure can be carried out.

We have

(∇2 + k2
h)∇2

t

 ψ1

ψ2

 =
1

µh

 ẑ · ∇ ×∇×M

ẑ · ∇ ×M

 (3.131)

The magnetic field in the presence of magnetic density M can be expressed as

H =
[
∇×∇× (ẑψ1) + k2

h∇× (ẑψ2)
]
− 1

µh
(ẑẑ +

∇t∇t
∇t2

) ·M (3.132)
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which ensures ∇ ·H = −∇ ·M/µh required by (3.96). Now the TE and TM potentials for a

general case with both sources satisfy

(∇2 + k2
h)∇2

t

 ψ1

ψ2

 =

 ẑ · ∇ ×
(
P + 1

µh
∇×M

)
ẑ · ∇ ×

(
1
k2h
∇×P + 1

µh
M
)
 (3.133)

which are obtained by combining two sets of results of one type of source. This binary system

of equations is use to define a set of scalar Green’s functions and thereby provide route leading

to a formal solution for the TE and TM potentials. However, rather that evaluating the

potentials, we use the scalar Green’s function to derive dyadic kernels for the hyper-singular

volume integral equations with the goal of finding numerically approximation of the source

densities.

In order to construct the required dyadic kernels, we first define a set of scalar Green’s

functions satisfying

(∇2 + k2
h)

 G0 +GΓ
11 GΓ

12

GΓ
21 G0 +GΓ

22

 = −

 1 0

0 1

 δ(r− r′) (3.134)

where G0 is the free-space scalar Green’s function. The superscript of GΓ
ij denotes the fields

associated with field migration from the boundary. The subscripts of GΓ
ij denote the modal

character of the field and the source respectively. A TE term is denoted by subscript 1 and a

TM term by 2. GΓ
12 represents the TE field due to a TM source. The off-diagonal terms GΓ

12

and GΓ
21 account for the coupling between both modes due to the reflection at the interfaces.

In the planarly layered isotropic medium, TE and TM modes are decoupled and both GΓ
12 and

GΓ
21 components are zeros.

The corresponding point-source potentials can be defined as

(∇2 + k2
h)∇t2

 U0 + U11 U12

U21 U0 + U22

 = −

 1 0

0 1

 δ(r− r′) (3.135)

with the following relationship

G0(r, r′) = −∇t2U0 (3.136)

GΓ
ij(r, r

′) = −∇t2Uij (3.137)



www.manaraa.com

34

Now using the principle of superposition and the fact that the ψ1 and ψ2 can be represented

by an integral operator of the point source potentials U acting on the corresponding scalar

sources, we write ψ1

ψ2

 =

∫
Vf

 U0 + U11 U12

U21 U0 + U22

 ·
 ẑ · ∇′ ×

(
P + 1

µh
∇′ ×M

)
ẑ · ∇′ ×

(
1
k2h
∇′ ×P + 1

µh
M
)
 dv′ (3.138)

Applying integration by parts [93] to the above equation, the potential due to an electric source

can be written as

ψ1p =

∫
Vf

[
∇′ × [(U0 + U11)ẑ] +

1

k2
h

∇′ ×∇′ × [U12ẑ]

]
·P(r′)dv′ (3.139)

ψ2p =

∫
Vf

[
∇′ × [U21ẑ] +

1

k2
h

∇′ ×∇′ × [(U0 + U22)ẑ]

]
·P(r′)dv′ (3.140)

and due to magnetic source as

ψ1m =
1

µh

∫
Vf

[
∇′ ×∇′ × [(U0 + U11)ẑ] +∇′ × U12ẑ

]
·M(r′)dv′ (3.141)

ψ2m =
1

µh

∫
Vf

[
∇′ ×∇′ × (U21ẑ) +∇′ × [(U0 + U22)ẑ]

]
·M(r′)dv′ (3.142)

By substituting (3.139) and (3.140) into (3.130) and comparing with the first integral of (3.97)

on the right side, we can obtain the dyadic kernel Gee of the form

Gee = G0
ee + GΓ

ee (3.143)

with

G0
ee(r, r

′) = − 1

k2
h

(
ẑẑ +

∇t∇t
∇t2

)
δ(r− r′)

+ (∇× ẑ)(∇′ × ẑ)U0(r, r′)

+
1

k2
h

[∇× (∇× ẑ)][∇′ × (∇′ × ẑ)]U0(r, r′)

(3.144)

GΓ
ee(r, r

′) = (∇× ẑ)(∇′ × ẑ)U11(r, r′)

+
1

k2
h

(∇× ẑ)
[
∇′ × (∇′ × ẑ)

]
U12(r, r′)

+ [∇× (∇× ẑ)] (∇′ × ẑ)U21(r, r′)

+
1

k2
h

[∇× (∇× ẑ)]
[
∇′ × (∇′ × ẑ)

]
U22(r, r′)

(3.145)
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where the dyadic kernel is decomposed into singular term G0
ee denoted by a superscript zero and

regular term GΓ
ee denoted by a superscript Γ that account for the interaction of the unbounded

solution with boundaries. After some transformations used in [94, 19], (3.144) reduces to

G0
ee(r, r

′) =

(
I +

1

k2
h

∇∇
)
G0(r, r′) (3.146)

which is the unbounded domain dyadic kernel [94]. Similarly, by substituting (3.141) and

(3.142) into (3.132) and comparing with the second integral of (3.98) on the right side, we can

obtain the dyadic kernel Gmm of the form

Gmm = G0
mm + GΓ

mm (3.147)

with

GΓ
mm(r, r′) =

1

k2
h

(∇×∇× ẑ)
(
∇′ ×∇′ × ẑ

)
U11(r, r′)

+
1

k2
h

(∇×∇× ẑ)
(
∇′ × ẑ

)
U12(r, r′)

+ (∇× ẑ)
(
∇′ ×∇′ × ẑ

)
U21(r, r′)

+ (∇× ẑ)
(
∇′ × ẑ

)
U22(r, r′)

(3.148)

and G0
mm = G0

ee.

To determine the kernel Gme(r, r′) and Gem(r, r′), one can apply the curl operator ∇×

upon Gee and Gmm as defined in (3.43) and (3.62). Alternatively, Gem(r, r′) can be gotten by

substituting (3.141) and (3.142) into (3.130) and comparing with the second integral of (3.97)

as

GΓ
em(r, r′) = (∇× ẑ)

(
∇′ ×∇′ × ẑ

)
U11(r, r′)

+ (∇× ẑ)
(
∇′ × ẑ

)
U12(r, r′)

+ (∇×∇× ẑ)
(
∇′ ×∇′ × ẑ

)
U21(r, r′)

+ (∇×∇× ẑ)
(
∇′ × ẑ

)
U22(r, r′)

(3.149)

G0
em(r, r′) = ∇G0(r, r′)× I (3.150)
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Similarly Gme(r, r′) can be gotten

GΓ
me(r, r

′) = (∇×∇× ẑ)
(
∇′ × ẑ

)
U11(r, r′)

+
1

k2
h

(∇×∇× ẑ)
[
∇′ × (∇′ × ẑ)

]
U12(r, r′)

+ k2
h(∇× ẑ)(∇′ × ẑ)U21(r, r′)

+ (∇× ẑ)[∇′ × (∇′ × ẑ)]U22(r, r′)

(3.151)

G0
me(r, r

′) = ∇G0(r, r′)× I (3.152)

Note that the dyadic kernel expressions in terms of scalar kernels are valid not only the planarly

layered structure but also the cylindrical layered structure [19]. Now the derivation of dyadic

kernels are completed and once the scalar kernels are obtained, the dyadic kernel can be easily

achieved by substituting into corresponding expressions.

3.4.1 Dyadic Green’s Kernels in the Cartesian Coordinate System

The dyadic Green function of unbounded domain in Cartesian coordinate system can be

explicitly expressed as follow in a matrix form

G0(r, r′) =
1

k2
h


(k2
h + ∂2

∂x2
) ∂2

∂x∂y
∂2

∂x∂z

∂2

∂y∂x (k2
h + ∂2

∂y2
) ∂2

∂y∂z

∂2

∂z∂x
∂2

∂z∂y (k2
h + ∂2

∂z2
)

G0(r, r′) (3.153)

The dyadic kernels account for the interaction of the unbounded solution with boundaries

can be expressed in matrix forms in terms of scalar Greens’ kernels as follows

GΓ
ee = (∇× ẑ)(∇′ × ẑ)U11 +

1

k2
h

[∇× (∇× ẑ)][∇′ × (∇′ × ẑ)]U22

=


(
∂
∂y

∂
∂y′U11 + 1

k2h

∂4

∂x′∂z′∂x∂zU22

) (
− ∂
∂y

∂
∂x′U11 + 1

k2h

∂4

∂y′∂z′∂x∂zU22

)
− 1
k2h
∇′2t ∂2

∂x∂zU22(
− ∂
∂x

∂
∂y′U11 + 1

k2h

∂4

∂x′∂z′∂y∂zU22

) (
∂
∂x

∂
∂x′U11 + 1

k2h

∂4

∂y′∂z′∂y∂zU22

)
− 1
k2h
∇′2t ∂2

∂y∂zU22

− 1
k2h

∂2

∂x′∂z′∇
2
tU22 − 1

k2h

∂2

∂y′∂z′∇
2
tU22

1
k2h
∇′2t∇2

tU22


(3.154)



www.manaraa.com

37

GΓ
mm =

1

k2
h

(∇×∇× ẑ)
(
∇′ ×∇′ × ẑ

)
U11 + (∇× ẑ)

(
∇′ × ẑ

)
U22

=


(

1
k2h

∂4

∂x′∂z′∂x∂zU11 + ∂
∂y

∂
∂y′U22

) (
1
k2h

∂4

∂y′∂z′∂x∂zU11 − ∂
∂y

∂
∂x′U22

)
− 1
k2h
∇′2t ∂2

∂x∂zU11(
1
k2h

∂4

∂x′∂z′∂y∂zU11 − ∂
∂x

∂
∂y′U22

) (
1
k2h

∂4

∂y′∂z′∂y∂zU11 + ∂
∂x

∂
∂x′U22

)
− 1
k2h
∇′2t ∂2

∂y∂zU11

− 1
k2h

∂2

∂x′∂z′∇
2
tU11 − 1

k2h

∂2

∂y′∂z′∇
2
tU11

1
k2h
∇′2t∇2

tU11


(3.155)

GΓ
me(r, r

′) = (∇×∇× ẑ)
(
∇′ × ẑ

)
U11 + (∇× ẑ)[∇′ × (∇′ × ẑ)]U22

=


(

∂3

∂x∂z∂y′U11 + ∂3

∂y∂x′∂z′U22

) (
− ∂3

∂x∂z∂x′U11 + ∂3

∂y∂y′∂z′U22

)
−∇′2t ∂∂yU22(

∂3

∂y∂z∂y′U11 − ∂3

∂x∂x′∂z′U22

)
−
(

∂3

∂y∂z∂x′U11 + ∂3

∂x∂y′∂z′U22

)
∇′2t ∂

∂xU22

−∇2
t
∂
∂y′U11 ∇2

t
∂
∂x′U11 0


(3.156)

GΓ
em(r, r′) = (∇× ẑ)[∇′ × (∇′ × ẑ)]U11 + (∇×∇× ẑ)

(
∇′ × ẑ

)
U22

=


(

∂3

∂x∂z∂y′U22 + ∂3

∂y∂x′∂z′U11

) (
− ∂3

∂x∂z∂x′U22 + ∂3

∂y∂y′∂z′U11

)
−∇′2t ∂∂yU11(

∂3

∂y∂z∂y′U22 − ∂3

∂x∂x′∂z′U11

)
−
(

∂3

∂y∂z∂x′U22 + ∂3

∂x∂y′∂z′U11

)
∇′2t ∂

∂xU11

−∇2
t
∂
∂y′U22 ∇2

t
∂
∂x′U22 0


(3.157)

Here we explicitly list all the operator used in the derivation in details.

∇ =
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ (3.158)

∇2 =
∂

∂x2
+

∂

∂y2
+

∂

∂z2
(3.159)

∇2
t =

∂2

∂x2
+

∂2

∂y2
(3.160)

∇× ẑ =
∂

∂y
x̂− ∂

∂x
ŷ (3.161)

∇×∇× ẑ = ∇ (∇ · ẑ)−∇2ẑ =
∂2

∂x∂z
x̂+

∂2

∂y∂z
ŷ −∇2

t ẑ (3.162)

(∇× ẑ)(∇′ × ẑ) =
∂

∂y

∂

∂y′
x̂x̂− ∂

∂y

∂

∂x′
x̂ŷ − ∂

∂x

∂

∂y′
ŷx̂+

∂

∂x

∂

∂x′
ŷŷ (3.163)
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3.4.2 Dyadic Green’s Kernels in the Cylindrical Coordinate System

Similarly we can obtain the dyadic kernel form in cylindrical coordinate system by applying

the following operators

∇ = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
+ ẑ

∂

∂z
(3.164)

∇2 =
1

ρ

∂

∂ρ
[ρ
∂

∂ρ
] +

1

ρ2

∂2

∂φ2
+

∂2

∂z2
(3.165)

∇2
t =

1

ρ

(
∂

∂ρ
(ρ
∂

∂ρ
) +

1

ρ

∂2

∂φ2

)
(3.166)

∇× ẑ = ρ̂
1

ρ

∂

∂φ
− φ̂ ∂

∂ρ
(3.167)

∇×∇× (ẑ) = ρ̂

(
∂2

∂z∂ρ

)
+ φ̂

(
1

ρ

∂2

∂z∂φ

)
− ẑ∇2

t (3.168)

(∇× ẑ)(∇′ × ẑ) =
1

ρ′
1

ρ

∂2

∂φ∂φ′
ρ̂ρ̂− 1

ρ

∂2

∂φ∂ρ′
ρ̂φ̂− 1

ρ′
∂2

∂ρ∂φ′
φ̂ρ̂+

∂2

∂ρ∂ρ′
φ̂φ̂ (3.169)

The formulation of dyadic kernels in cylindrical is cumbersome for example two components of

GΓ
ee are

GΓ
ee,zz(r, r

′) =
1

k2
h

∇2
t∇′

2
tU22 = − 1

k2
h

∇′2tGΓ
22 (3.170)

GΓ
ee,φφ(r, r′) =

∂2

∂ρ∂ρ′
U11−

1

k2
hρ
′

∂3

∂ρ∂z′∂φ′
U12−

1

ρ

∂3

∂z∂φ∂ρ′
U21 +

1

k2
hρρ
′

∂4

∂z∂φ∂z′∂φ′
U22 (3.171)

Hence we will not explicitly shown here.
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CHAPTER 4. INCIDENT FIELD EVALUATION FOR PLANAR AND

CYLINDRICAL STRUCTURES

Incident field evaluation is an important step of MoM implementation. Besides, it’s also

involved in the impedance variation evaluation, Eq.(3.103), due to flaws. The analytical solution

of the field for a air-cored circular coil whose axis is perpendicular to planar conductor interface

was studied by Dodd [9]. However usually only the electric field expression was shown due

to the fact most of the integral equation models were developed and implemented for non-

ferromagnetic materials. Here the explicit analytical expression for both electric and magnetic

fields are summarized for a paralleled coil above half-space and slab, and a rotary coil in the

borehole and tube.

Some assumption for calculating eddy current coil field:

• Frequency is low enough to apply quasi-static condition, say f <10MHz[9].

• The coil have a uniform current distribution over a rectangular cross section

• The coil field can be expressed as an integral superposition of single filament loop fields

by integrating over the rectangular cross section

For quasi-static case, we have k2 = iωµ0µrσ, γ =
√
κ2 − k2 =

√
κ2 − iωµσ. For free space

(σ = 0), we have k2 = 0 and γ = κ.
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4.1 Incident Field in Planar Layered Structure

4.1.1 The Fields for a Coil in Free-space

O x

z

ρ
0

z0

Figure 4.1: Horizontal circular filament loop in the unbounded space

The field of a filament loop with radius ρ0 in free space, Fig. 4.1, can be obtained by applying

method of separation of variables. To solve this equation, we divide the space into two infinite

half spaces by z = z0 plane and then account for the current discontinuity into boundary

condition in terms of magnetic field. The governing equation and boundary conditions cab be

rewritten as

∇2φ̂Eφ = 0 (4.1)

[Eφ]|z=z0 = 0 (4.2)

[
∂Eφ
∂z

]|z=z0 = −iωµIδ(ρ− ρ0) (4.3)

By using separation of variables and applying the Handkel transform shown in Appendix C,

the electric field can be expressed as

Eloopφ,air(ρ, z, ρ0, z0) =
iωµ0I

2

∞∫
0

J1(κρ0)ρ0J1(κρ)e−κ|z−z0|dκ (4.4)

where J1(z) is the first kind Bessel function.
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An eddy current inductive coil with inner radius r1, outer radius r2 and length ` locates in

the free space, Fig. 4.2. The number of turns of the coil is N and the turn density is defined as

v =
N

`(r2 − r1)
(4.5)

The total field can be obtained from single filament loop field by integrating over the cross

section of coil.

r1

r2

l zc

z=0

Z

Figure 4.2: Horizontal coil in the unbounded space

Then the Eφ(ρ, z) can be expressed as

Eφ,coil(ρ, z) = v

r2∫
r1

z2∫
z1

Eloopφ,air(ρ, z, ρ0, z0)dρ0dz0

= iωµ0Iv

∞∫
0

1

κ3
J1(κρ)dκ

κr2∫
κr1

J1(x)xdx

z2∫
z1

κ

2
e−κ|z−z0|dz0

= iωµ0Iv

∞∫
0

1

κ3
J1(κρ)χ(κr1, κr2)F (κ, z)dκ

(4.6)

where

χ(s1, s2) =

s2∫
s1

J1(x)xdx (4.7)
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and

F (κ, z) =
κ

2

z2∫
z1

e−κ|z−z0|dz0

=


F1(κ, z) = e−κ(z−zc) sinh(κ`2 )

F2(κ, z) = 1− e−
κ`
2 cosh(κ(z − zc))

F3(κ, z) = eκ(z−zc) sinh(κ`2 )

z > zc + `
2

zc + `
2 ≥ z ≥ zc −

`
2

z < zc − `
2

(4.8)

If the coil is located in the conductive medium, we have k2 = iωµσ = iωµ0µrσ, γ =
√
κ2 − k2 =

√
κ2 − iωµσ. For a filament loop with radius ρ0, the electric field is expressed as

Eloopφ,lossy(ρ, z, ρ0, z0) =
iωµI

2

∞∫
0

κ

γ
J1(κρ0)ρ0J1(κρ)e−γ|z−z0|dκ (4.9)

and

Eφ,coil(ρ, z) = v

r2∫
r1

z2∫
z1

Eloopφ,lossy(ρ, z, ρ0, z0)dρ0dz0

= iωµIv

∞∫
0

1

γ2κ
J1(κρ)dκ

κr2∫
κr1

J1(x)xd(x)

z2∫
z1

γ

2
e−γ|z−z0|dz0

= iωµIv

∞∫
0

1

γ2κ
J1(κρ)χ(κr1, κr2)F (γ, z)dκ

(4.10)

The cross-section of electric and magnetic field distribution of a coil in free space is calculated,

Fig. 4.3. The section plane is cutting through the coil center. The frequency is 100 kHz and

the coil size is the same as the TEM Problem 15, which is shown in Tab. 5.1. Note that the

current excited current is assumed as 1 Ampere.
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(a) |Br| component of the magnetic flux density of a coil
in free space on a cross-section plane through the coil
center
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(c) |Eφ| component of the electric field of a coil in free
space on a cross-section plane through the coil center

Figure 4.3: The electromagnetic fields of a coil in the free space
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4.1.2 The Fields for a Coil above an Infinite Half-space Conductor

z=0

Z

Region 2

Region 1

µ2,σ2

r1

r2

l zc

µ1,σ1

Figure 4.4: Horizontal coil above half-space conductive metal

When we put the coil above an infinite large planar conductor, the incident field which

transmits from the coil to the air-conductor interface can be expressed as

E0
φ,1(ρ, z) = iωµ0Iv

∞∫
0

1

κ3
J1(κρ)χ(κr1, κr2)eκ(z−zc) sinh(

κ`

2
)dκ (4.11)

where F (κ, z) with z < zc − `
2 is chosen. The superscript 0 means incident field and subscript

1 denotes region 1. By using Maxwell’s equation

∇×E = iωµ0H (4.12)

Here we assume the region 1 is air. If it’s conductive medium, a little modification is necessary

as shown in previous section. For simplicity, the region 1 is always assumed as air unless stated.

So µ1 = µ0 and σ1 = 0.

The magnetic fields are obtained

H0
z,1 = −i 1

ωµ0

1

ρ

∂[ρEφ]

∂ρ

= Iv

∞∫
0

1

κ2
J0(κρ)χ(κr1, κr2)eκ(z−zc) sinh(

κ`

2
)dκ

(4.13)
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where the relationship [J1(κρ)]′ = κJ ′1(κρ) = κJ0(κρ) − 1
ρJ1(κρ) (page 222) [102] is used to

calculate H field.

H0
ρ,1 = −Iv

∞∫
0

1

κ3
J1(κρ)χ(κr1, κr2)F ′(κ, z)dκ

= −Iv
∞∫

0

1

κ2
J1(κρ)χ(κr1, κr2)eκ(z−zc) sinh(

κ`

2
)dκ

(4.14)

Based on scalar decomposition, we could generally express the E and H field by using TE and

TM potential in a piece-wise homogeneous medium. For source free case, the electric field

density and magnetic field density can be expressed as

E = iωµ [∇× (ẑψ1) +∇×∇× (ẑψ2)] (4.15)

H = ∇×∇× (ẑψ1) + k2∇× (ẑψ2) (4.16)

where ψ1 denotes TE potential and ψ2 denotes TM potential.

Above a half-space conductor plane, the total field is the combination of incident field and

reflected field from interface. The potential ψ in the air and conductor can be expressed as

follow separately in terms of reflection coefficient Γ(κ) and transmission coefficient T (κ),

ψin(r) =

∫ ∞
−∞

∫ ∞
−∞

f̃(kx, ky)e
κzei(kxx+kyy)dkxdky (4.17)

ψr(r) =

∫ ∞
−∞

∫ ∞
−∞

f̃(kx, ky)Γ(κ)e−κzei(kxx+kyy)dkxdky (4.18)

in the air,

ψt(r) =

∫ ∞
−∞

∫ ∞
−∞

f̃(kx, ky)T(κ)eγzei(kxx+kyy)dkxdky (4.19)

in the conductor.

Here we assume the incident field always comes from region 1 into region 2, then Γ(κ) and

T (κ) for TE and TM potentials are

Γte(κ) =
γ1/γ2 − µ1/µ2

γ1/γ2 + µ1/µ2
=
γ1µ2 − γ2µ1

γ1µ2 + γ2µ1
(4.20)

Tte(κ) =
2(γ1/γ2)(µ1/µ2)

γ1/γ2 + µ1/µ2
=

2γ1µ1

γ1µ2 + γ2µ1
= (µ1/µ2)[1 + Γte(κ)] (4.21)



www.manaraa.com

46

Γtm(κ) =
σ2γ1 − σ1γ2

σ2γ1 + σ1γ2
(4.22)

Ttm(κ) =
σ1

σ2
[1 + Γtm(κ)] =

2σ1γ1

σ2γ1 + σ1γ2
(4.23)

For the layered planar problem, the TE and TM modes are decoupled. It means the TE

only causes the TE mode and vice versa. For the coil which is parallel with the interface of the

air and conductor, there is only the TE component ψ1. we have known the incident E field as

E0
1 = iωµ0∇× (ẑψin) = −iωµ0φ̂

∂ψin
∂ρ

= φ̂Einφ,1 = φ̂iωµ0Iv

∞∫
0

J1(κρ)=(κ)eκzdκ (4.24)

where =(κ) = 1
κ3
χ(κr1, κr2)e−κzc sinh(κ`2 ). subscript 1 denotes the region 1.

Then the reflected field can be obtained

Ere
1 = φ̂Ereφ,1 = φ̂iωµ0Iv

∞∫
0

=(κ)[Γ(κ)e−κz]J1(κρ)dκ (4.25)

The total field in the air region is then obtained as

Etotalφ,1 = iωµ0Iv

∞∫
0

=(κ)[eκz + Γte(κ)e−κz]J1(κρ)dκ. (4.26)

In the conductor region, the field is given as

E2 = iωµ2∇× (ẑψt(r)) = φ̂iωµ0µr2Iv

∞∫
0

J1(κρ)=(κ)eγzTte(κ)dκ (4.27)

Similar to free space case, the magnetic fields are

Hρ,2 = i
1

ωµ2

∂Eφ,2
∂z

= −Iv
∞∫

0

γJ1(κρ)=(κ)eγzTte(κ)dκ (4.28)

Hz,2 = −i 1

ωµ2
[
Eφ,2
ρ

+
∂Eφ,2
∂ρ

] = Iv[

∞∫
0

κJ0(κρ)=(κ)eγzTte(κ)dκ] (4.29)
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In addition, the impedance change of an air-cored coil in the air due to half-space conduc-

tor is obtained as

∆Z = −iπωµ0v
2

∞∫
0

χ2(κr1, κr2)

κ6
(e−kz1 − e−kz2)

2
Γte(κ)dκ (4.30)

where

2e−κzc sinh(
κ`

2
) = e−kz1 − e−kz2 (4.31)

The electric field distribution of a coil above half-space conductor is calculated, Fig. 4.5.

The frequency is 0.9 kHz. The coil size and conductor parameters are the same as the TEM

Problem 15, which is shown in Tab. 5.1. The excited current is set as 1 Ampere.

From the calculated fields, we can clearly find that the tangential component Eφ obtained

by the equations of the air region and conductor region separately is continuous which meets

boundary conditions.

4.1.3 The Fields for a Coil above an Infinite Conductor Slab

z

Region 1

Region 2

Region 3

z=-d

µ  σ
2     2

µ  σ
3     3

r1

r2

l zc

1

z=-d2

µ  σ
1     1

Figure 4.6: Horizontal coil above conductive slab

For a case where a metal slab is located in the free space. The coil is parallel with the

interface of the air and conductor. So µ1 = µ3 = µ0 and σ1 = σ3 = 0. Only TE potential is
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(b) The |Eφ| field at the half-space conductor interface, the fields are calculated separately by the formulation in
the air and in the conductor

Figure 4.5: The electromagnetic fields of TEM Problem 15
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involved. Refer to Fig. 4.6, the general TE potential expressions in three different regions can

be written with unknown coefficients firstly as follow [90]

ψ1 = A1[eγ1z + Γg12e
−2γ1d1e−γ1z]

ψ2 = A2[eγ2z + Γ23e
−2γ2d2e−γ2z]

ψ3 = A3e
γ3z

(4.32)

Γ12 means the reflection coefficient with the incident field coming from region 1 and reflected

back to region 1. The superscript g of Γg12 indicates the total reflection coefficient which accounts

for all the effects due to all the interface in region 1.

By imposing two constraint conditions at the interface z = −d1, we have

A2e
−γ2d1 = T12A1e

−γ1d1 + Γ21A2Γ23e
−2γ2d2+γ2d1 (4.33)

due to that the downward field in region 2 is the sum of the transmitted field from region 1

and the reflected field from the interface at z = −d1 and

Γg12A1e
−γ1d1 = Γ12A1e

−γ1d1 + T21A2Γ23e
−2γ2d2+γ2d1 (4.34)

due to that the upward field in region 1 is the sum of the transmitted field from region 2 and

the reflected field from the interface at z = −d1. Now we can obtain

A2 =
T12e

(γ2−γ1)d1

1− Γ21Γ23e−2γ2(d2−d1)
A1 (4.35)

Γg12 = Γ12 +
T21T12Γ23e

−2γ2(d2−d1)

1− Γ21Γ23e−2γ2(d2−d1)
(4.36)

This is similar to the reflection coefficient Γin in terms of S-parameters in the RF circuit [103].

Γin = S11 +
S12S21Γload
1− S22Γload

(4.37)

If we add one layer more, we just need to replace the Γ23 by the general reflection coefficient

Γg23 as

Γg12 = Γ12 +
T12Γg23T21e

−2γ2(d2−d1)

1− Γ21Γg23e
−2γ2(d2−d1)

(4.38)

Now we have the TE potential in region 2 as

ψ2 = A1
T12e

(γ2−γ1)d1

1− Γ21Γ23e−2γ2(d2−d1)
[eγ2z + Γ23e

−2γ2d2e−γ2z] (4.39)
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For simplicity, we assume d1 = 0 and d2 = d. d is the thickness of metal slab. Then the

coefficient A1 can be obtained by the following relationship

E0
1 = iωµ1∇× (ẑψin) = −iωµ1φ̂

∂ψin
∂ρ

= iωµ1∇× (ẑA1e
γ1z) = φ̂iωµ0Iv

∞∫
0

J1(κρ)=(κ)eκzdκ

(4.40)

Now the E field in the conductor region 2 could be expressed as

Etotal
2 = iωµ2∇× (ẑψ2(r))

= φ̂iωµ2Iv

∞∫
0

J1(κρ)=(κ)
T12

1− Γ21Γ23e−2γ2d
[eγ2z + Γ23e

−2γ2de−γ2z]dκ
(4.41)

If the slab is in the free space, namely region 3 is air, hence we have the reflection coefficient

Γij and transmission coefficient Tij as

Γ23 = Γ21 =
γ2µ1 − γ1µ2

γ2µ1 + γ1µ2
=
γ2 − κµr2
γ2 + κµr2

T12 =
2γ1µ1

γ1µ2 + γ2µ1
=

2κ

κµr2 + γ2

(4.42)

Then we have the total TE potential in region 2 as

ψ2 = A12κ
(γ2 + κµr2) eγ2z + (γ2 − κµr2) e−γ2(z+2d)

(γ2 + κµr2)2 − (γ2 − κµr2)2e−2γ2d
(4.43)

and the electric and magnetic fields in region 2 as

Etotal
2 = φ̂iωµ2Iv

∞∫
0

J1(κρ)=(κ)

[
2κ

(γ2 + κµr2) eγ2z + (γ2 − κµr2) e−γ2(z+2d)

(γ2 + κµr2)2 − (γ2 − κµr2)2e−2γ2d

]
dκ (4.44)

Htotal
ρ,2 = −Iv

∞∫
0

J1(κρ)=(κ)

[
2κ

(γ2 + κµr2) γ2e
γ2z − (γ2 − κµr2) γ2e

−γ2(z+2d)

(γ2 + κµr2)2 − (γ2 − κµr2)2e−2γ2d

]
dκ (4.45)

Htotal
z,2 = Iv

∞∫
0

J0(κρ)=(κ)

[
2κ2 (γ2 + κµr2) eγ2z + (γ2 − κµr2) e−γ2(z+2d)

(γ2 + κµr2)2 − (γ2 − κµr2)2e−2γ2d

]
dκ (4.46)

If the slab is non-ferromagnetic material with µr2 = 1, then electric field in regio 2 reduces

to

Etotal
2 = φ̂iωµ2Iv

∞∫
0

J1(κρ)=(κ)

[
2κ

(κ+ γ2)eγ2z + (γ2 − κ)e−γ2(z+2d)

(κ+ γ2)2 − (γ2 − κ)2e−2γ2d

]
dκ (4.47)
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Similarly, The TE potential in region 3 can be obtained. By applying the constraint at

interface z = −d2, we have

A3e
−γ3d2 = T23A2e

−γ2d2 (4.48)

Then A3 can be expressed in terms of A2 as

A3 = T23A2e
(γ3−γ2)d2 (4.49)

By eliminating A2, we have

ψ3 = A1
T12e

(γ2−γ1)d1

1− Γ21Γ23e−2γ2(d2−d1)
T23e

(γ3−γ2)d2eγ3z (4.50)

Again, if the slab is located in the free space, d1 = 0 and d2 = d, we have

ψ3 = A1
4κγ2µr2e

(κ−γ2)deκz

(γ2 + κµr2)2 − (γ2 − κµr2)2e−2γ2d
(4.51)

Once we have the TE potential, the electric and magnetic fields can be obtained. For

example,

Etotal
3 = iωµ3∇× (ẑψ3(r))

= φ̂iωµ3Iv

∞∫
0

J1(κρ)=(κ)
4κγ2µr2e

(κ−γ2)deκz

(γ2 + κµr2)2 − (γ2 − κµr2)2e−2γ2d
dκ

(4.52)

The electric field distribution of a coil above conductor slab is calculated, Fig. 4.7. The

frequency is 0.9 kHz. The coil size and conductor parameters are the same as the TEM Problem

15, which is shown in Tab. 5.1. The excited current is set as 1 Ampere. The slab thickness is

set as 6 mm.

4.2 Incident Field in Cylindrical Layered Structure

The EM fields of a rotary coil has been presented by Burke [33] and an alternative method

was proposed by Bowler via single layer potential [104]. The more general case of a rotary

coil with arbitrary orientation will be discussed in Chapter 7. In this section, the electric and

magnetic fields of a rotary coil inside borehole and tube will be summarized.
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Figure 4.7: The electromagnetic fields of TEM Problem 15, the slab thickness is 6 mm
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Figure 4.8: A rotary coil locates in free space

4.2.1 Incident Field in Free-space

The electric field and magnetic field in the source-free region can be expressed in terms of

TE scalar potential ψ1 and TM scalar potential ψ2 as follow.

E = iωµ[∇× (ẑψ1) +∇×∇× (ẑψ2)] (4.53)

H = ∇×∇× (ẑψ1) + k2∇× (ẑψ2) (4.54)

where µ is the permeability of medium. k2 = iωµσ. σ is the conductivity of medium. Assuming

the circular coil is in the air region, the magnetic field in the air is only determined by the TE

potential, ψ1, since k2 = 0. In the air region, the TE potential can be expressed as

ψ1c =

∞∑
m=−∞

eimϕ
∫ ∞
−∞

Cm(υ)
Im(|υ|ρ)

Km(|υ|ρ)
eiυzdυ,

ρ < α1

ρ > α2

(4.55)

here Cm(υ) is the source coefficients which is determined by the coil parameters. m is the index

in azimuthal direction.
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For a rotary coil whose axis is perpendicular to the axis of the z axis of the global coordinate

system, Cm(υ) can be expressed as

Cm(υ) =

=
iInd
υ2π2

+∞∑
n=−∞

cos(
nπ

2
) [Im+n(|υ||x0 + t|)− Im+n(|υ||x0 − t|)]

×
∫ r2

r1

∫ ρ0

0
In(|υ||y1|) sin(υ

√
ρ0

2 − y1
2)dy1dρ0

(4.56)

Here nd = N/l(r2− r1) is the turn density, N is the filament turns of coil, t = l/2 is half of the

coil axial length, r1, r2 is inner and outer radius of coil separately.

In free space, we can get magnetic flux density as due to k2 = 0

B = ∇Ψ0 = ∇
[
µ0
∂ψ1c

∂z

]
(4.57)

Ψ0 can be obtained by

Ψ0 =

∞∑
m=−∞

eimϕ
∫ ∞
−∞

C̃m(υ)
Im(|υ|ρ)

Km(|υ|ρ)
eiυzdυ,

ρ < α1

ρ > α2

(4.58)

where C̃m(υ) = iυµ0Cm(υ)

Provided we know the source coefficients C̃m(υ) of Ψ0, the magnetic field can be obtained

by

B0 = ∇Ψ0 = ρ̂
∂Ψ0

∂ρ
+ φ̂

1

ρ

∂Ψ0

∂φ
+ ẑ

∂Ψ0

∂z
(4.59)

For the coil inside borehole or tube, we have (ρ > α2) the incident magnetic flux density B

Bρ
0 =

∂Ψ0

∂ρ
=

∞∑
m=−∞

eimϕ
∫ ∞
−∞

[Km(|υ|ρ)]′C̃m(υ)eiυzdυ (4.60)

Bφ
0 =

1

ρ

∂Ψ0

∂φ
= im

∞∑
m=−∞

eimϕ
∫ ∞
−∞

1

ρ
Km(|υ|ρ)C̃m(υ)eiυzdυ (4.61)

Bz
0 =

∂Ψ0

∂z
=

∞∑
m=−∞

eimϕ
∫ ∞
−∞

Km(|υ|ρ)iυC̃m(υ)eiυzdυ (4.62)

The following recursion relationships of Bessel K function[102] are used in the derivation.

K ′m(z) = −Km−1(z)− m

z
Km(z) (4.63)
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K ′m(z) = −Km+1(z) +
m

z
Km(z) (4.64)

K ′m(z) = −Km+1(z) +Km−1(z)

2
(4.65)

4.2.2 Incident Field in the Conductive Region for a Borehole

Assuming the coil is inside the borehole. there will be reflection and transmission with

the existence of the borehole. We can write the incident and reflected scalar potentials in the

following form

ψ0
1 =

∞∑
m=−∞

eimϕ
∫ ∞
−∞

Cm(υ)Km(|υ|ρ)eiυzdυ (4.66)

ψre1 =

∞∑
m=−∞

eimϕ
∫ ∞
−∞

Crem (υ)Im(|υ|ρ)eiυzdυ (4.67)

in the air region and

ψ1
(2) =

∞∑
m=−∞

eimϕ
∫ ∞
−∞

C(2)
m (υ)Km(γρ)eiυzdυ (4.68)

ψ2
(2) =

∞∑
m=−∞

eimϕ
∫ ∞
−∞

D(2)
m (υ)Km(γρ)eiυzdυ (4.69)

in the conductive region.

where Crem (υ) = Γg12(1, 1)Cm(υ). C
(2)
m (υ) = Tg

12(1, 1)Cm(υ), D
(2)
m (υ) = Tg

12(2, 1)Cm(υ) and

γ =
√
υ2 − k2. Γg12 is the non-normalized reflection matrix for region 1 to region 2. Γg12(1, 1)

indicates the (1, 1) component of reflection matrix Γg12. Similarly to Tg
12(2, 1). Tg

12(2, 2) and

Tg
12(1, 2) are vanished, which indicates no transmission related to TM mode. More details

about reflection and transmission coefficients are in Appendix A. From Eq 4.53 and 4.54, we

obtain

H̃ρ =
∂2ψ̃1

∂z∂ρ
+ imk2 ψ̃2

ρ
(4.70)

Ẽρ = iωµ

(
im

ρ
ψ̃1 +

∂2

∂z∂ρ
ψ̃2

)
(4.71)

H̃φ =
im

ρ

∂ψ̃1

∂z
− k2∂ψ̃2

∂ρ
(4.72)

Ẽφ = −iωµ

(
∂ψ̃1

∂ρ
− im

ρ

∂ψ̃2

∂z

)
(4.73)
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H̃z =
∂2ψ̃1

∂z2
+ k2ψ̃1 (4.74)

Ẽz = iωµ

(
∂2ψ̃2

∂z2
+ k2ψ̃2

)
(4.75)

The explicit expressions of electric field are summarized as follow

Eρ = iωµ

∞∑
m=−∞

eimϕ
∫ ∞
−∞

eiυz
(
im

ρ
Km(γρ)C(2)

m + iυγK ′m(γρ)D(2)
m

)
dυ

= iωµ
∞∑

m=−∞
eimϕ

∫ ∞
−∞

eiυz
1

ρ

(
imC(2)

m + iυMm(γρ)D(2)
m

)
Km(γρ)dυ

(4.76)

Eφ = −iωµ
∞∑

m=−∞
eimϕ

∫ ∞
−∞

eiυz
(
γK ′m(γρ)C(2)

m +
mυ

ρ
Km(γρ)D(2)

m

)
dυ

= −iωµ
∞∑

m=−∞
eimϕ

∫ ∞
−∞

eiυz
1

ρ

(
Mm(γρ)C(2)

m +mυD(2)
m

)
Km(γρ)dυ

(4.77)

Ez = −iωµ
∞∑

m=−∞
eimϕ

∫ ∞
−∞

eiυz
(
γ2Km(γρ)D(2)

m

)
dυ (4.78)

Table 4.1: Coil and borehole parameters

Coil Inner Raids, r1 1.529mm

Coil Outer Raids, r2 3.918mm

Coil Thickness 1.044mm

Number of Turns 305

Isolated DC Coil Inductance, L0 465µH

Tube Inner Diameter 25mm

Tube Outer Diameter 300mm

Conductivity (MS/m) 23.05

Relative Magnetic Permeability, µr 1

Liftoff, λ 0.73mm
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Figure 4.9: The |Eφ| field at the borehole interface

The electric field |Eφ| of a coil inside a borehole is calculated, Fig. 4.9. The frequency is 40

kHz. The coil size and borehole parameters are shown in Tab. 4.1 [19]. The excited current is

set as 1 Ampere.

4.2.3 Incident Field in a Tube

The incident field inside the tube material can be obtained by using similar procedures as

borehole. Based the above derivation, we can get the ψ1 and ψ2 potentials in the tube with

inside source, which is used to calculate the incident field.
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 ψ̃1,ρ

ψ̃2,ρ


2

= [Km(γ2ρ)I + Im(γ2ρ)Γg23] · [I − Γg21 · Γ
g
23]
−1 ·Tg

12 ·
a1m

Km(γ1a)
(4.79)

where

a1m

Km(γ1a)
=

 Cm(υ)

0

 (4.80)

Then we have ψ̃1,ρ

ψ̃2,ρ


2

=
Km(γ1a)

Km(γ2a)

[
Km(γ2ρ)I + Im(γ2ρ)

Km(γ2b)

Im(γ2b)
Γ23

]

·
[
I − Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
Γ21 · Γ23

]−1

·T12 ·

 Cm(υ)

0


(4.81)

Defining [
I − Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
Γ21 · Γ23

]−1

·T12 = M (4.82)

Km(γ1a)

Km(γ2a)
= α (4.83)

Km(γ2b)

Im(γ2b)
= β (4.84)

 ψ̃1,ρ

ψ̃2,ρ


2

= α [Km(γ2ρ)I + Im(γ2ρ)βΓ23] ·M ·

 Cm(υ)

0


= α

 Km(γ2ρ) + Im(γ2ρ)βΓ23,(11) Im(γ2ρ)βΓ23,(12)

Im(γ2ρ)βΓ23,(21) Km(γ2ρ) + Im(γ2ρ)βΓ23,(22)

 ·
 M(11)Cm(υ)

M(21)Cm(υ)


= αCm(υ)

 Km(γ2ρ) + Im(γ2ρ)βΓ23,(11) Im(γ2ρ)βΓ23,(12)

Im(γ2ρ)βΓ23,(21) Km(γ2ρ) + Im(γ2ρ)βΓ23,(22)

 ·
 M(11)

M(21)


(4.85)

Then

ψ̃1,ρ = αCm(υ)
{[
Km(γ2ρ) + Im(γ2ρ)βΓ23,(11)

]
M(11) +

[
Im(γ2ρ)βΓ23,(12)

]
M(21)

}
(4.86)
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ψ̃2,ρ = αCm(υ)
{[
Im(γ2ρ)βΓ23,(21)

]
M(11) +

[
Km(γ2ρ) + Im(γ2ρ)βΓ23,(22)

]
M(21)

}
(4.87)

Now the incident field in the tube can be obtained and expressed as

Ẽρ = iωµαCm(υ)
1

ρ



im
[
Km(γ2ρ) + Im(γ2ρ)βΓ23,(11)

]
M(11)

+ im
[
Im(γ2ρ)βΓ23,(12)

]
M(21)

+ iκ
[
Λm(γ2ρ)Im(γ2ρ)βΓ23,(21)

]
M(11)

+ iκ
[
Mm(γ2ρ)Km(γ2ρ) + Λm(γ2ρ)Im(γ2ρ)βΓ23,(22)

]
M(21)


(4.88)

Ẽφ = −iωµαCm(υ)
1

ρ



[
Mm(γ2ρ)Km(γ2ρ) + Λm(γ2ρ)Im(γ2ρ)βΓ23,(11)

]
M(11)

+
[
Λm(γ2ρ)Im(γ2ρ)βΓ23,(12)

]
M(21)

+mκ
[
Im(γ2ρ)βΓ23,(21)

]
M(11)

+mκ
[
Km(γ2ρ) + Im(γ2ρ)βΓ23,(22)

]
M(21)


(4.89)

Ẽz = −iωµαCm(υ)γ2
2
{[
Im(γ2ρ)βΓ23,(21)

]
M(11) +

[
Km(γ2ρ) + Im(γ2ρ)βΓ23,(22)

]
M(21)

}
(4.90)

Eρ =
∞∑

m=−∞
eimϕ

∫ ∞
−∞

eiκzẼρdκ (4.91)

Eφ =

∞∑
m=−∞

eimϕ
∫ ∞
−∞

eiκzẼφdκ (4.92)

Ez =
∞∑

m=−∞
eimϕ

∫ ∞
−∞

eiκzẼzdκ (4.93)

The magnitude of electrical field distribution at the tube inner interface has been calculated,

Fig. 8.8a in terms of distance in z direction and circumferential direction (φ × a). The eddy-

current coil parameters and tube dimensions are summarized in Tab (7.1). Once obtaining the

electrical field distribution, the magnitude of current distribution can be easily evaluated by

multiplying the conductivity of tube material.
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CHAPTER 5. COIL IMPEDANCE CHANGES DUE TO CRACKS IN

FERROMAGNETIC PLANAR STRUCTURES

The eddy current modeling of the planar structure is a important topic due to that a lot

of practical EC problems can be represented by simple structure modeling, for example the

engine blade can be modeled as thin plate and the composite cabin shield can be modeled as

planar-layered structure. In this chapter, we have implemented the MoM of half-space and

thin slab for ferromagnetic conductive material based the formulation discussed in chapter 3.

The theoretical predicted results were compared with existing benchmark experimental data.

Excellent agreement was achieved.

5.1 Green’s Function for an Unbounded Domain

The Green’s function, G0(r, r′), due to a point source in a homogeneous, linear and isotropic

medium with conductivity σ and permeability µ satisfies the following equation

(∇2 + k2)G0(r, r′) = −δ(r− r′) (5.1)

and the solution can be expressed as G0(r, r′) = eikR

4πR . But another alternative solution can be

obtained by using 2-D Fourier transform.

By using 2-D Fourier transform, G0(r, r′) could be expressed as the following form

G0(r, r′) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

G̃0(kx, ky, z, z
′)eikxx+ikyye−i(kxx

′+kyy′)dkxdky (5.2)

Substituting it back into Eq. 5.1, we have[
∂2

∂z2
− γ2

]
G̃0(kx, ky, z, z

′) = −δ(z − z′) (5.3)

where γ =
√
k2
x + k2

y − k2 =
√
κ2 − k2, k2 = iωµσ. G̃0(kx, ky, z, z

′) is also called the spectral

domain Green function. If the medium is free space, k2 = iωµσ = 0. The general solution of
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G̃0(kx, ky, z, z
′) can be written as

G̃0(kx, ky, z, z
′) = Ae−γ(z−z′) +Beγ(z−z′) (5.4)

in terms of undetermined coefficient A and B. In the z dimension, the solution region can be

divided as two parts, namely,

G̃0(kx, ky, z, z
′) = Ae−γ(z−z′)

for z − z′ > 0 and

G̃0(kx, ky, z, z
′) = Beγ(z−z′)

for z − z′ < 0. By taking the integration of Eq. 5.3 from z′ − ε to z′ + ε (ε is infinitesimal)

and together with that the G̃0(kx, ky, z, z
′) should be continuous at z = z′, G̃0(kx, ky, z, z

′) is

determined as

G̃0(kx, ky, z, z
′) =

1

2γ
e−γ|z−z

′| (5.5)

Now the green function becomes

G0(r, r′) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

1

2γ
e−γ|z−z

′|eikx(x−x′)eiky(y−y′)dkxdky (5.6)

5.2 Dyadic Green’s Function for a Ferromagnetic Half-space Conductor

For half-space case, we assume the upper medium (region 1) has conductivity σ1 and per-

meability µ1, the other half conductor has conductivity σ2 and permeability µ2 and the source

is inside conductive region 2, Fig. 5.1. In order to get the dyadic kernel for half space, a set of

scalar green functions, Uij and U0 in Eq. 3.134, need to be determined first.

We know the green function can be written as the sum of a singular part and a regular part

as follow.

Gij(r, r
′) = δijG0(r, r′) +GΓ

ij(r, r
′) (5.7)

Or

G̃ij(kx, ky, z, z
′) = δijG̃0(kx, ky, z, z

′) + G̃Γ
ij(kx, ky, z, z

′) (5.8)
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Region 1

Region 2

µ1,σ1

µ2,σ2

Figure 5.1: Half Space with Point Source in Region 2

in the spectral domain. G̃0(kx, ky, z, z
′) has been determined in the previous section. In the

conductor, G̃Γ
ij(kx, ky, z, z

′) indicating the field migrating toward inside the conductor from the

interface is represented as

G̃Γ
ij(kx, ky, z, z

′) = Γij
1

2γ2
eγ2zeγ2z

′
(5.9)

Or

GΓ
ij =

1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

Γij
1

2γ2
eγ2zeγ2z

′
eikx(x−x′)eiky(y−y′)dkxdky (5.10)

where Γij is the reflection coefficient of half space and Γij = 0(i 6= j), which means the TE and

TM modes are decoupled for planar structure. γ2 =
√
k2
x + k2

y − k2
2 =

√
κ2 − k2

2, k2
2 = iωµ2σ2.

Based on definition GΓ
ij = −∇2

tUij , we can easily have

Ũij =
1

κ2
G̃Γ
ij (5.11)

where κ2 = k2
x + k2

y.

U11 =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

1

κ2

1

2γ2
Γ11e

γ2(z+z′)eikx(x−x′)eiky(y−y′)dkxdky (5.12)

U22 =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

1

κ2

1

2γ2
Γ22e

γ2(z+z′)eikx(x−x′)eiky(y−y′)dkxdky (5.13)

For eddy-current application, region 1 is usually air, Γ11(κ) = γ2−κµr2
γ2+κµr2

and Γ22(κ) = −1. Note

that Uij could be singular for κ = 0. However, we are using the scalar kernels to get the dyadic

kernel rather than calculating the scalar kernels directly. In the end, it turns out the reflected

part of dyadic kernel is not singular.
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Now all four dyadic kernels can be obtained by substituting Uij into Eq. 3.145, 3.148, 3.149

and 3.151 or

GΓ
ee(r, r

′) = (∇× ẑ)(∇′ × ẑ)U11 +
1

k2
h

[∇× (∇× ẑ)][∇′ × (∇′ × ẑ)]U22 (5.14)

GΓ
me(r, r

′) = (∇×∇× ẑ)
(
∇′ × ẑ

)
U11 + (∇× ẑ)[∇′ × (∇′ × ẑ)]U22 (5.15)

GΓ
mm(r, r′) =

1

k2
h

(∇×∇× ẑ)
(
∇′ ×∇′ × ẑ

)
U11 + (∇× ẑ)

(
∇′ × ẑ

)
U22 (5.16)

GΓ
em(r, r′) = (∇× ẑ)

(
∇′ ×∇′ × ẑ

)
U11 + (∇×∇× ẑ)

(
∇′ × ẑ

)
U22 (5.17)

where the host wave number is kh = k2. ∇2
t or ∇′2t will introduce −κ2 = −(k2

x + k2
y). Since

the cumbersome derivation of formulation, here we only show the final explicit expressions of

reflected part of dyadic Green’s functions for reference.

Then we have GΓ
ee

GΓ
ee(r, r

′) =
1

(2π)2

1

k2
2

∫ ∞
−∞

∫ ∞
−∞

eγ2(z+z′)

2γ2κ2
G̃Γ
eee

ikx(x−x′)eiky(y−y′)dkxdky (5.18)

where

G̃Γ
ee =


k2

2k
2
yΓ11 + Γ22k

2
xγ

2
2 −k2

2kxkyΓ11 + Γ22kxkyγ
2
2 Γ22κ

2ikxγ2

−k2
2kxkyΓ11 + Γ22kxkyγ

2
2 k2

2k
2
xΓ11 + Γ22k

2
yγ

2
2 Γ22κ

2ikyγ2

−Γ22κ
2ikxγ2 −Γ22κ

2ikyγ2 Γ22κ
4

 (5.19)

Note that for the non-ferromagnetic problem, only x̂x̂ component is needed for narrow notch

EC modeling [22]

GΓ
ee,xx(r, r′) =

∂2

∂y∂y′
U11 +

1

k2
2

∂4

∂x∂z∂x′∂z′
U22

=
1

(2π)2

1

k2
2

∫ ∞
−∞

∫ ∞
−∞

eγ2(z+z′)

2γ2κ2

[
k2

2k
2
yΓ11 + Γ22k

2
xγ

2
2

]
eikx(x−x′)eiky(y−y′)dkxdky

(5.20)

for GΓ
me

GΓ
me(r, r

′) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

eγ2(z+z′)

2κ2
G̃Γ
mee

ikx(x−x′)eiky(y−y′)dkxdky (5.21)

where

G̃Γ
me =


kxkyΓ11 + kxkyΓ22 −k2

xΓ11 + k2
yΓ22 Γ22κ

2iky/γ2

k2
yΓ11 − k2

xΓ22 −kxkyΓ11 − kxkyΓ22 −Γ22κ
2ikx/γ2

−Γ11κ
2iky/γ2 Γ11κ

2ikx/γ2 0

 (5.22)
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for GΓ
mm

GΓ
mm(r, r′) =

1

(2π)2

1

k2
2

∫ ∞
−∞

∫ ∞
−∞

eγ2(z+z′)

2γ2κ2
G̃Γ
mme

ikx(x−x′)eiky(y−y′)dkxdky (5.23)

where

G̃Γ
mm =


Γ11k

2
xγ

2
2 + k2

2k
2
yΓ22 Γ11kxkyγ

2
2 − k2

2kxkyΓ22 Γ11κ
2ikxγ2

Γ11kxkyγ
2
2 − k2

2kxkyΓ22 Γ11k
2
yγ

2
2 + k2

2k
2
xΓ22 Γ11κ

2ikyγ2

−Γ11κ
2ikxγ2 −Γ11κ

2ikyγ2 Γ11κ
4

 (5.24)

for GΓ
em

GΓ
em(r, r′) =

1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

eγ2(z+z′)

2κ2
G̃Γ
eme

ikx(x−x′)eiky(y−y′)dkxdky (5.25)

where

G̃Γ
em =


kxkyΓ11 + kxkyΓ22 k2

yΓ11 − k2
xΓ22 Γ11κ

2iky/γ2

−k2
xΓ11 + k2

yΓ22 −kxkyΓ11 − kxkyΓ22 −Γ11κ
2ikx/γ2

−Γ22κ
2iky/γ2 Γ22κ

2ikx/γ2 0

 (5.26)

In order to simplify the numerical calculation, the artificial boundary conditions can be applied

to transform the double integral into a double Fourier series representation. The boundary

conditions, namely PEC at x = 0, y = 0 and PMC at x = hx, y = hy, are used, which can avoid

the DC component in the series [99]. Then Eq. 5.12 and Eq. 5.13 can be expressed as

U11 =
4

hxhy

∞∑
i=1

∞∑
j=1

1

κ2
ij

1

2γ2,ij
Γ11,ije

γ2,ij(z+z
′) sin(kx,ix) sin(kx,ix

′) sin(ky,jy) sin(ky,jy
′) (5.27)

U22 =
4

hxhy

∞∑
i=1

∞∑
j=1

1

κ2
ij

1

2γ2,ij
Γ22,ije

γ2,ij(z+z
′) cos(kx,ix) cos(kx,ix

′) cos(ky,jy) cos(ky,jy
′) (5.28)

where kx,i = (2i−1)π
2hx

, ky,j = (2j−1)π
2hy

and i, j = 1, 2, 3....

Then we have

GΓ
ee(r, r

′) =
2

hxhy

1

k2
2

∞∑
i=1

∞∑
j=1

eγ2,ij(z+z
′)

γ2,ijκ2
ij

G̃Γ
ee. ∗ Fee(x, x

′, y, y′) (5.29)

where G̃Γ
ee and Fee(x, x

′, y, y′) are matrix

G̃Γ
ee =


k2

2k
2
y,jΓ11,ij + Γ22,ijk

2
x,iγ

2
2,ij −k2

2kx,iky,jΓ11,ij + Γ22,ijkx,iky,jγ
2
2,ij −Γ22,ijκ

2
ijkx,iγ2,ij

−k2
2kx,iky,jΓ11,ij + Γ22,ijkx,iky,jγ

2
2,ij k2

2k
2
x,iΓ11,ij + Γ22,ijk

2
y,jγ

2
2,ij −Γ22,ijκ

2
ijky,jγ2,ij

−Γ22,ijκ
2
ijkx,iγ2,ij −Γ22,ijκ

2
ijky,jγ2,ij Γ22,ijκ

4
ij


(5.30)
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and

Fee(x, x
′, y, y′) =


sinx sinx′ cos y cos y′ sinx cosx′ cos y sin y′ sinx cosx′ cos y cos y′

cosx sinx′ sin y cos y′ cosx cosx′ sin y sin y′ cosx cosx′ sin y cos y′

cosx sinx′ cos y cos y′ cosx cosx′ cos y sin y′ cosx cosx′ cos y cos y′


(5.31)

Note that the arguments of sin or cos function are simplified by dropping off the kx,i or ky,j .

The operator .∗ means
a11 a12 a13

a21 a22 a23

a31 a32 a33

 . ∗

b11 b12 b13

b21 b22 b23

b31 b32 b33

 =


a11b11 a12b12 a13b13

a21b21 a22b22 a23b23

a31b31 a32b32 a33b33

 (5.32)

Similarly we have

GΓ
mm(r, r′) =

2

hxhy

1

k2
2

∞∑
i=1

∞∑
j=1

eγ2,ij(z+z
′)

γ2,ijκ2
ij

G̃Γ
mm. ∗ Fmm(x, x′, y, y′) (5.33)

where G̃Γ
mm and Fmm(x, x′, y, y′) are matrix

G̃Γ
mm =


k2
x,iγ

2
2,ijΓ11,ij + Γ22,ijk

2
2k

2
y,j kx,iky,jγ

2
2,ijΓ11,ij − Γ22,ijk

2
2kx,iky,j Γ11,ijκ

2
ijkx,iγ2,ij

kx,iky,jγ
2
2,ijΓ11,ij − Γ22,ijk

2
2kx,iky,j Γ11,ijk

2
y,jγ

2
2,ij + k2

2k
2
x,iΓ22,ij Γ11,ijκ

2
ijky,jγ2,ij

Γ11,ijκ
2
ijkx,iγ2,ij Γ11,ijκ

2
ijky,jγ2,ij Γ11,ijκ

4
ij


(5.34)

together with

Fmm(x, x′, y, y′) =


cosx cosx′ sin y sin y′ cosx sinx′ sin y cos y′ cosx sinx′ sin y sin y′

sinx cosx′ cos y sin y′ sinx sinx′ cos y cos y′ sinx sinx′ cos y sin y′

sinx cosx′ sin y sin y′ sinx sinx′ sin y cos y′ sinx sinx′ sin y sin y′


(5.35)

GΓ
me(r, r

′) =
2

hxhy

∞∑
i=1

∞∑
j=1

eγ2,ij(z+z
′)

κ2
ij

G̃Γ
me. ∗ Fme(x, x

′, y, y′) (5.36)

where G̃Γ
me and Fme(x, x

′, y, y′) are matrix
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G̃Γ
me =


kx,iky,jΓ11,ij + kx,iky,jΓ22,ij −k2

x,iΓ11,ij + k2
y,jΓ22,ij −Γ22,ijκ

2
ijky,j/γ2,ij

k2
y,jΓ11,ij − k2

x,iΓ22,ij −kx,iky,jΓ11,ij − kx,iky,jΓ22,ij Γ22,ijκ
2
ijkx,i/γ2,ij

Γ11,ijκ
2
ijky,j/γ2,ij −Γ11,ijκ

2
ijkx,i/γ2,ij 0


(5.37)

together with

Fme(x, x
′, y, y′) =


cosx sinx′ sin y cos y′ cosx cosx′ sin y sin y′ cosx cosx′ sin y cos y′

sinx sinx′ cos y cos y′ sinx cosx′ cos y sin y′ sinx cosx′ cos y cos y′

sinx sinx′ sin y cos y′ sinx cosx′ sin y sin y′ 0


(5.38)

GΓ
em(r, r′) =

2

hxhy

∞∑
i=1

∞∑
j=1

eγ2,ij(z+z
′)

κ2
ij

G̃Γ
em. ∗ Fem(x, x′, y, y′) (5.39)

where G̃Γ
em and Fem(x, x′, y, y′) are matrix

G̃Γ
em =


kx,iky,jΓ11,ij + kx,iky,jΓ22,ij k2

y,jΓ11,ij − k2
x,iΓ22,ij Γ11,ijκ

2
ijky,j/γ2,ij

−k2
x,iΓ11,ij + k2

y,jΓ22,ij −kx,iky,jΓ11,ij − kx,iky,jΓ22,ij −Γ11,ijκ
2
ijkx,i/γ2,ij

−Γ22,ijκ
2
ijky,j/γ2,ij Γ22,ijκ

2
ijkx,i/γ2,ij 0


(5.40)

together with

Fem(x, x′, y, y′) =


sinx cosx′ cos y sin y′ sinx sinx′ cos y cos y′ sinx sinx′ cos y sin y′

cosx cosx′ sin y sin y′ cosx sinx′ sin y cos y′ cosx sinx′ sin y sin y′

cosx cosx′ cos y sin y′ cosx sinx′ cos y cos y′ 0


(5.41)

When implementing the MoM, the volume integral evaluation is involved. A general formu-

lation was achieved here for easily calculation purpose. Assuming a component of Gee dyadic

Green’s function can be generally expressed as follow

GΓ
ee,xx(r, r′) =

2

hxhy

∞∑
i=1

∞∑
j=1

Θij × eγ2,ij(z+z
′) sin(kx,ix) sin(kx,ix

′) cos(ky,jy) cos(ky,jy
′) (5.42)
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where Θij has nothing to do with coordinates. So the volume integration within a specific

volume cell will not affect this part. Then the integration of green function in a specific volume

cell Vg can be expressed as∫
Vg

GΓ
ee,xx(rq, r

′)dr′ =
16

hxhy

∞∑
i=1

∞∑
j=1

Θij
eγ2,ij(zq+zg)

kx,iky,jγ2,ij

sin(kx,ixq) sin(kx,ixg) cos(ky,jyq) cos(ky,jyg)

sin (kx,i∆x/2) sin (ky,j∆y/2) sinh (γ2,ij∆z/2)

(5.43)

Note that the integral evaluation of Green’s function kernel can be sped up significantly

by calculating some common parts first. For example eγ2,ij(zq+zg)

kx,iky,jγ2,ij
, sin(kx,ixg), cos(ky,jyq) and

cos(ky,jyg) depend on Xq, Yq, Xg, Ygand Zq + Zg. All the possible cases can be calculated

first and saved as look-up table. Then the integral Eq. (5.43) can be obtained by checking

the look-up table. The speed will be much faster than directly evaluation every time. Besides,

sin (kx,i∆x/2), sin (ky,j∆y/2) and sinh (γ2,ij∆z/2) in Eq. (5.43) only depend on ∆x, ∆y and

∆z. Similar procedure can be implemented.

Another way to calculate the regular reflection integral part is to pre-calculate Green’s

kernel within big enough region first. Then the integral can be obtained by searching the

Green function value table via numerical integral and interpolation. By analyzing the Green’s

function itself, we notice the value of Green’s kernel only depends on x− x′, y − y′ and z + z′,

based on which the calculation burden can be reduced. Such as GΓ
ee,xx

GΓ
ee,xx(r, r′) =

∂2

∂y∂y′
U11 +

1

k2
2

∂4

∂x∂z∂x′∂z′
U22

=
1

(2π)2

1

k2
2

∫ ∞
−∞

∫ ∞
−∞

eγ2(z+z′)

2γ2κ2

[
k2

2k
2
yΓ11 + Γ22k

2
xγ

2
2

]
eikx(x−x′)eiky(y−y′)dkxdky

(5.44)

As to the evaluation of Green’s kernels, the truncated forms could be used to rapidly calculate,

such as

GΓ
ee,xx(r, r′) =

2

hxhy

1

k2
2

∞∑
i=1

∞∑
j=1


eγ2,ij(z+z

′)

γ2,ij × κ2
ij

[
k2

2k
2
y,jΓ11,ij + Γ22,ijk

2
x,iγ

2
2,ij

]
× sin(kx,ix) sin(kx,ix

′) cos(ky,jy) cos(ky,jy
′)

 (5.45)
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5.3 Dyadic Green’s Function for a Ferromagnetic Conductive Slab

Again we assume the source is inside the conductor slab (region 2) with conductivity σ2 and

permeability µ2 since we want to derive the dyadic green’s function with the source in region 2.

The upper medium (region 1) has conductivity σ1 and permeability µ1 and the below medium

(region 3) has conductivity σ3 and permeability µ3. In order to get the dyadic kernel for slab,

the set of scalar green functions (Eq. 3.134) need to be determined first.

Region 1

Region 2

µ1,σ1

µ2,σ2

Region 3 µ3,σ3

z=-d1

z=-d2

z=z’

Figure 5.2: Slab with Embedded Point Source in Region 2

Similarly to half-space case, Uij can be expressed as in the spectral domain form

Ũij =
1

κ2

1

2γ2

[
Beγ2z +De−γ2z

]
(5.46)

where the coefficient B and D can refer to Appendix A. By assuming that region 1 and region

3 are free space, d1 = 0 and d2 = d, which is the slab thickness, we have

Ũ11 =
1

κ2

1

2γ2
Γ11

eγ2(z+z′) + Γ11e
−2γ2d[eγ2(z−z′) + e−γ2(z−z′)] + e−2γ2de−γ2(z′+z)

1− Γ2
11e
−2γ2d

=
1

κ2

1

2γ2
R11

(5.47)

Ũ22 =
1

κ2

1

2γ2
Γ22

eγ2(z+z′) + Γ22e
−2γ2d[eγ2(z−z′) + e−γ2(z−z′)] + e−2γ2de−γ2(z′+z)

1− Γ2
22e
−2γ2d

=
1

κ2

1

2γ2
R22

(5.48)

where Γ11 = γ2−κµr2
γ2+κµr2

,Γ22 = −1
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We can also expressed the scalar kernels explicitly as

U11 =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

1

κ2

1

2γ2
R11e

ikx(x−x′)eiky(y−y′)dkxdky (5.49)

U22 =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

1

κ2

1

2γ2
R22e

ikx(x−x′)eiky(y−y′)dkxdky (5.50)

Now we have obtained the Uij , the similar truncation procedures as half-space case did can be

applied to get the dyadic Green function for the slab case. For example,

GΓ
mm,yy(r, r

′) =
2

hxhy

∞∑
i=1

∞∑
j=1


1

k2
2

1

γ2,ij × κ2
ij

[
γ2

2,ijk
2
y,jR11,zz′ + k2

2k
2
x,iR22

]
× sin(kx,ix) sin(kx,ix

′) cos(ky,jy) cos(ky,jy
′)

 (5.51)

GΓ
me,yx(r, r′) =

2

hxhy

∞∑
i=1

∞∑
j=1


1

κ2
ij

[
k2
y,jR11,z − k2

x,iR22,z′
]

× sin(kx,ix) sin(kx,ix
′) cos(ky,jy) cos(ky,jy

′)

 (5.52)

where

γ2
2,ijR22,zz′ =

∂2R22

∂z∂z′
(5.53)

γ2
2,ijR11,zz′ =

∂2R11

∂z∂z′
(5.54)

γ2,ijR11,z′ =
∂R11

∂z′
(5.55)

γ2,ijR11,z =
∂R11

∂z
(5.56)

or explicitly expressed as

R22,zz′ = Γ22
eγ2,ij(z+z

′) − Γ22e
−2γ2,ijd[eγ2,ij(z−z

′) + e−γ2,ij(z−z
′)] + e−2γ2,ijde−γ2,ij(z

′+z)

1− Γ2
22e
−2γ2,ijd

(5.57)

R11,zz′ = Γ11
eγ2,ij(z+z

′) − Γ11e
−2γ2,ijd[eγ2,ij(z−z

′) + e−γ2,ij(z−z
′)] + e−2γ2,ijde−γ2,ij(z

′+z)

1− Γ2
11e
−2γ2,ijd

(5.58)

R11,z = Γ11
eγ2,ij(z+z

′) + Γ11e
−2γ2,ijd[eγ2,ij(z−z

′) − e−γ2,ij(z−z′)]− e−2γ2,ijde−γ2,ij(z
′+z)

1− Γ2
11e
−2γ2,ijd

(5.59)

R11,z′ = Γ11
eγ2,ij(z+z

′) − Γ11e
−2γ2,ijd[eγ2,ij(z−z

′) − e−γ2,ij(z−z′)]− e−2γ2,ijde−γ2,ij(z
′+z)

1− Γ2
11e
−2γ2,ijd

(5.60)

For simplicity, we explicitly express the dyadic kernels as follow for reference

GΓ
ee(r, r

′) =
2

hxhy

1

k2
2

∞∑
i=1

∞∑
j=1

1

γ2,ijκ2
ij

G̃Γ
ee. ∗ Fee(x, x

′, y, y′) (5.61)
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where G̃Γ
ee

G̃Γ
ee =


k2

2k
2
y,jR11 +R22,zz′k

2
x,iγ

2
2,ij −k2

2kx,iky,jR11 +R22,zz′kx,iky,jγ
2
2,ij −R22,zκ

2
ijkx,iγ2,ij

−k2
2kx,iky,jR11 +R22,zz′kx,iky,jγ

2
2,ij k2

2k
2
x,iR11 +R22,zz′k

2
y,jγ

2
2,ij −R22,zκ

2
ijky,jγ2,ij

−R22,z′κ
2
ijkx,iγ2,ij −R22,z′κ

2
ijky,jγ2,ij R22κ

4
ij


(5.62)

GΓ
mm(r, r′) =

2

hxhy

1

k2
2

∞∑
i=1

∞∑
j=1

1

γ2,ijκ2
ij

G̃Γ
mm. ∗ Fmm(x, x′, y, y′) (5.63)

where G̃Γ
mm

G̃Γ
mm =


k2
x,iγ

2
2,ijR11,zz′ +R22k

2
2k

2
y,j kx,iky,jγ

2
2,ijR11,zz′ −R22k

2
2kx,iky,j R11,zκ

2
ijkx,iγ2,ij

kx,iky,jγ
2
2,ijR11,zz′ −R22k

2
2kx,iky,j k2

y,jγ
2
2,ijR11,zz′ +R22k

2
2k

2
x,i R11,zκ

2
ijky,jγ2,ij

R11,z′κ
2
ijkx,iγ2,ij R11,z′κ

2
ijky,jγ2,ij R11κ

4
ij


(5.64)

GΓ
me(r, r

′) =
2

hxhy

∞∑
i=1

∞∑
j=1

1

κ2
ij

G̃Γ
me. ∗ Fme(x, x

′, y, y′) (5.65)

where G̃Γ
me

G̃Γ
me =


kx,iky,jR11,z + kx,iky,jR22,z′ −k2

x,iR11,z + k2
y,jR22,z′ −R22κ

2
ijky,j/γ2,ij

k2
y,jR11,z − k2

x,iR22,z′ −kx,iky,jR11,z − kx,iky,jR22,z′ R22κ
2
ijkx,i/γ2,ij

R11κ
2
ijky,j/γ2,ij −R11κ

2
ijkx,i/γ2,ij 0


(5.66)

GΓ
em(r, r′) =

2

hxhy

∞∑
i=1

∞∑
j=1

1

κ2
ij

G̃Γ
em. ∗ Fem(x, x′, y, y′) (5.67)

where G̃Γ
em

G̃Γ
em =


kx,iky,jR11,z′ +R22,zkx,iky,j k2

y,jR11,z′ −R22,zk
2
x,i R11κ

2
ijky,j/γ2,ij

−k2
x,iR11,z′ +R22,zk

2
y,j −kx,iky,jR11,z′ −R22,zkx,iky,j −R11κ

2
ijkx,i/γ2,ij

−R22κ
2
ijky,j/γ2,ij R22κ

2
ijkx,i/γ2,ij 0


(5.68)
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The F matrix is the same as that half-space case has. When implementing the MoM,

the volume integral evaluation is involved. A general formulation was also achieved here for

easy calculation purpose. Assuming a component of dyadic Green’s function can be generally

expressed as follow

GΓ(r, r′) =
2

hxhy

∞∑
i=1

∞∑
j=1

Θij(z, z
′) sin(kx,ix) sin(kx,ix

′) cos(ky,jy) cos(ky,jy
′) (5.69)

Then the volume integral is obtained as∫
Vg

GΓ(rq, r
′)dr′

=
2

hxhy

∞∑
i=1

∞∑
j=1

sin(kx,ixq) cos(ky,jyq)

[∫
zg

Θij(zq, z
′)dz′

]∫
Sg

sin(kx,ix
′) cos(ky,jy

′)dx′dy′

=
2

hxhy

∞∑
i=1

∞∑
j=1


8

kx,iky,jγ2,ij
Θij(zq, zg) sin(kx,ixq) sin(kx,ixg) cos(ky,jyq)

cos(ky,jyg) sin (kx,i∆x/2) sin (ky,j∆y/2) sinh (γij∆z/2)


(5.70)

5.4 Singularity of Gee, Gmm in an Unbounded Domain

The notation used in the singularity formulation is summarized as follow

1. G = eikR

4πR

Denote the Green’s function in unbounded domain and R = |r− r′|

2. G0 = 1
4πR

Denote the static Green’s function in unbounded domain.

3. G0 = [I +∇∇]G = [I +∇′∇′]G

Denote the daydic Green’s function in unbounded domain.

4. F(r, t) = Re[F(r)ejωt] = Re[F(r)e−iωt]

5. G(r, r′) = G0(r, r′) + GΓ(r, r′)

The dyadic Green’s function in the layered medium can be expressed as the sum of the

unbounded part and the reflection part, which accounts for the boundary conditions.
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Evaluation of the integral involving the singularity in the source region is a key step in

the analysis yet not all authors reveal their approach. Although the topic has been treated in

the literature[105, 106, 76] which extract the singular region Vε containing r′ = r and achieve

explicit expressions for limiting case of an infinitesimal exclusion volume Vε or finite special Vε

shapes such as sphere, cylinder and cube, sphere and cylinder exclusions are not convenient

for integral calculation of the rest regular part of element volume containing singularity and

these exclusions will lead to very poor approximations when the cells have high aspect ratios

happened in narrow crack case. In this article we provide simple analytical expressions, which

is easy to implement and avoids the singularity extraction, to use in controlling the accuracy

of terms on the diagonal of the matrix.

In the matrix element evaluation of Aee and Amm, we will get involved with the following

integral as (5.71).

I0
qg = k2

∫
Vg

G0(rq, r
′)dv′ (5.71)

Here I0
qg is dyad. Vg is integral region of one specific volume element, rq is the matching-point

inside element Vq, which is at the center of the cell. k is the wave number. The I0
qg can also

be expressed as follow

I0
qg = k2

∑
i

I0x̂ix̂i +
∑
i

∑
j

Iij x̂ix̂j (5.72)

Where x̂i, x̂j with i, j ∈ {1, 2, 3} correspond to x̂, ŷ, ẑ for rectangular system. I0 and Iij are

one specific component of the dyad.

I0 =

∫
Vg

G(r, r′)dv′ (5.73)

Iij =

∫
Vg

∂2G(r, r′)

∂x′i∂x
′
j

dv′ = Bij + Cij (5.74)

Bij =

∫
Vg

∂2(G−G0)

∂x′i∂x
′
j

dv′ (5.75)

Cij =

∫
Vg

∂2G0(r, r′)

∂x′i∂x
′
j

dv′ =
∂2

∂x′i∂x
′
j

∫
Vg

G0(r, r′)dv′ (5.76)

For cube and sphere exclusion[106], Cij = −1
3δij . For other aspect ratio cuboid, it might

be obtained by using Eq 5.90 and Eq 5.91.
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For simplicity, here we set rq = 0 and drop the prime ′ . Then R =
√
x2 + y2 + z2. The I0

and Bij can be rewritten as

I0 =
1

4π

∫
Vg

eikR

R
dv (5.77)

Bij =

∫
Vg

[
∂2

∂xi∂xj
(G(R)−G0(R))

]
dv (5.78)

Cij =
∂2

∂xi∂xj

∫
Vg

G0(R)dv (5.79)

Since the exclusion region might be different shapes. Here we will discuss the cube and sphere

separately. Note that for cuboid element, we can just set the exclusion region the same as the

cell itself to avoid the exclusion procedure.

5.4.1 Cuboidal Exclusion Region

In a specific volume cell Vg with the dimension hx×hy×hz. it contains the exclusion region

Vε. Here we set the Vε = Vg for simplicity.

5.4.1.1 Evaluation of I0

By using series expansion, we obtain

eikR

R
≈

N∑
n=0

(ik)nRn−1

n!
(5.80)

Here N is truncation number. n ∈ [0, 1, 2...N ]. Then the I0 is reduced to

I0 ≈
1

4π

N∑
n=0

(ik)n

n!

∫ hx
2

−hx
2

∫ hy
2

−hy
2

∫ hz
2

−hz
2

Rn−1dxdydz =
1

4π

N∑
n=0

(ik)n

n!
Sn (5.81)

The evaluation of different n terms are discussed and shown as follow.

• n = 0

S0 =

∫
Vg

1

R
dxdydz (5.82)

which can be integrated analytically by using the following primitive function or indefinite

function ∫
1

R
dxdydz = F (x, y, z) + F (y, z, x) + F (z, x, y) (5.83)

F (x, y, z) = xy ln
[√

x2 + y2 + z2 + z
]
− x2

2
tan−1

[
yz

x
√
x2 + y2 + z2

]
(5.84)
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• n = 1

S1 = hxhyhz (5.85)

• n > 1 can be easily calculated by numerical integral method.

By using the above method, the calculation of I0 can be done quickly and accurately.

5.4.1.2 Evaluation of Bij and Cij

Similarly, we have

G−G0 ≈
1

4π

N∑
n=1

(ik)nRn−1

n!
(5.86)

by applying the series expansion and hence we obtain

Bij ≈
1

4π

N∑
n=1

(ik)n

n!

∫
Vg

∂2Rn−1

∂xi∂xj
dv =

1

4π

N∑
n=1

(ik)n

n!
Sn,ij (5.87)

By expressing the differentiation operator explicitly, we obtain

Bij(i = j) ≈ 1

4π

N∑
n=1

(ik)n

n!

∫
Vg

{
(n− 1)Rn−3 + (n− 1)(n− 3)xi

2Rn−5
}
dv (5.88)

Bij(i 6= j) ≈ 1

4π

N∑
n=1

(ik)n

n!

∫
Vg

{
(n− 1)(n− 3)xixjR

n−5
}
dv (5.89)

Similarly to I0, the evaluation of different n terms are discussed and shown as follow.

• n = 0 is the Cij . And this also occurs in adjacent cell integral evaluation, we can use the

following indefinite function [107]

Φ1(x, y, z) =

∫
∂2

∂x2
R−1dv = −tan−1

[ yz
xR

]
(5.90)

Φ2(x, y, z) =

∫
∂2

∂x∂y
R−1dv = ln(R+ z) (5.91)

• n = 1

S1,ij(i = j) = S1,ij(i 6= j) = 0 (5.92)

• n = 2

Φ1(x, y, z) =

∫
∂2

∂x2
Rdv = xy ln(R+ z) + xz ln(R+ y)− x2tan−1 yz

xR
(5.93)

Φ2(x, y, z) =

∫
∂2

∂x∂y
Rdv =

1

2
Rz +

x2 + y2

2
ln(R+ z) (5.94)
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• n = 3

B3,ij(i = j) =
1

4π

(ik)3

3!
2hxhyhz (5.95)

B3,ij(i 6= j) = 0 (5.96)

• n = 4

Φ1(x, y, z) =

∫
∂2

∂x2
R3dv

=
x

2

[
2yzR+ y(y2 + 3x2) ln(R+ z) + z(z2 + 3x2) ln(R+ y)− 2x3tan−1 yz

xR

] (5.97)

Φ2(x, y, z) =

∫
∂2

∂x∂y
R3dv =

1

8

[
[2R2 + 3(x2 + y2)]zR+ 3(x2 + y2)

2
ln(R+ z)]

]
(5.98)

• n = 5

Φ1(x, y, z) =

∫
∂2

∂x2
R4dv =

4

3
x[yz(R2 + 2x2)] (5.99)

Φ2(x, y, z) =

∫
∂2

∂x∂y
R4dv = (x2 + y2)2z +

2

3
(x2 + y2)z3 +

1

5
z5 (5.100)

• n > 5 could be easily calculate by applying numerical integral method. The contribution

after 5th term is usually negligible. However the routines should include the flexibility of

choosing how many terms to have.

When the product kR is bigger enough, we need the adjust the truncation term number

to make sure singular integration accuracy.

5.4.2 Spherical Exclusion Region

In a specific volume cell, it contains the sphere exclusion region Vε with the radius a.

5.4.2.1 Evaluation of I0

I0 =

∫
Vε

Gdv =
1

4π

∫
Vε

eikr

r
r2dΩdr =

∫
Vε

reikrdr =
−1

k2
[1 + eika(ika− 1)] (5.101)

Here dΩ is the differential Teriradian.
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5.4.2.2 Evaluation of Bij

By using the identities shown Appendix C for spherical coordinate system, we can easily

get the following useful equations.

π/2∫
−π/2

π∫
−π

r̂r̂ sin θdθdφ =
4

3
πI =

(
4

3
πx̂x̂+

4

3
πŷŷ +

4

3
πẑẑ

)
(5.102)

∇∇G =
eikr

4πr

(
r̂r̂(
−k2r2 − 3ikr + 3

r2
) + (

ikr − 1

r2
)I
)

(5.103)

∇∇G0 =
1

4πr

(
3r̂r̂

1

r2
− I 1

r2

)
(5.104)

Based Eq 5.102, Eq 5.103, Eq 5.104 and some formulation manipulations, the following

result can be obtained

∫
Vε

∇∇[G−G0]dv = −I k
2

3

∫ a

0
reikrdr = I 1

3

(
1 + eika(ika− 1)

)
(5.105)

Hence we have

Bij =
1

3
δij

(
1 + eika(ika− 1)

)
(5.106)

5.4.2.3 Evaluation of Cij

For sphere exclusion [106], we have

Cij = −1

3
δij (5.107)

Now, we can find a very simple expression can be achieved with sphere exclusion for the

singular integral shown as follow

I0
qg =

[
−1− 2

3
eika(ika− 1)

]
I (5.108)
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5.4.3 Integral Evaluation in Regular Region

When the Vq is not the same region as Vg, the integral, I0
qg, is regular and the following

equations can be used to evaluated it numerically.

∂2G(r, r′)

∂x′i∂x
′
i

= k2

{
−cos2θi −

i

kR

[
1 +

i

kR

] [
3cos2θi − 1

]}
G(r, r′) (5.109)

∂2G(r, r′)

∂x′i∂x
′
j

= k2 cos θi cos θj

{
−1− 3i

kR

[
1 +

i

kR

]}
G(r, r′) (5.110)

where cos θi =
xi−x′i
R and R = |r− r′|.

Another way is to use the formulation derived for the singular integral directly and its

advantage is quick calculation.

5.4.3.1 Spherical Exclusion Case

For Vε is sphere exclusion, It might be tedious to do the remaining region (Vg−Vε) integral.

Another way to achieve it is setting the Green’s function part as piece-wise function

G0(r, r′) =

 0

G0(r, r′)

r ∈ Vε

r /∈ Vε
(5.111)

Then now we can use the numerical method to calculate the integral within the whole element

region Vg.

5.4.3.2 Adjacent Cell Integral Calculation

Around one cell, there are six adjacent cells which is also very singular. Analytical evaluation

for these cells are preferable. For these 6 cells, we can easily to find that

• I0 of 6 cells are the same. (the distance between adjacent cell to singular cell is the same)

• Iij of 6 cells are not the same.

• shift the cell with the positive and negative value, we will get different I0 + Iij. However,

the diagonal elements will be the same if the absolute shift is the same.The off-diagonal

elements will have opposite signs between negative and positive shifts.
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for example, the cell with shift (a, 0, 0) and the cell with shift (−a, 0, 0) will have the

same diagonal elements. However, the element related with x partial derivative will have

opposite signs since shift is in the x direction. ( ∂2

∂x2i
will not affect the sign. ∂2

∂xi∂xj
in

different direction will introduce different sign.) So we can pre-calculate all the I for all

the possible distance between any two of mesh cells. Then the specific I value can be

picked based on shifting property discussed above.

5.5 Singularity of Gem, Gme

G0
em can be expressed as follow in the unbounded domain

G0
me = ∇G× I = −∇′G× I

=


0 −∂G

∂z
∂G
∂y

∂G
∂z 0 −∂G

∂x

−∂G
∂y

∂G
∂x 0

 =


0 ∂G

∂z′ − ∂G
∂y′

− ∂G
∂z′ 0 ∂G

∂x′

∂G
∂y′ − ∂G

∂x′ 0


(5.112)

where G = eikR

4πR denoting the Green’s function in unbounded domain. The singular integral

involved can be expressed as

I =

∫
Vg

G0
me(r, r

′)dv′ (5.113)

it is a 3× 3 matrix and the diagonal components are zeros. And we denote

Ii =
1

4π

∫
Vg

∂

∂x′i

(
eikR

R

)
dv′ (5.114)

For simplicity, we set r = 0 and drop the prime symbol ′, we have

Ii ≈
1

4π

N∑
n=0

(ik)n

n!

∫
Vg

∂Rn−1

∂xi
dv =

1

4π

N∑
n=0

Sn (5.115)

Sn can also be written in the form

Sn =
(ik)n

n!

∫
Vg

(n− 1)Rn−3xidv (5.116)

The the similar procedure used in Gee can be applied to every term.
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5.6 Singularity Treatment Verification by Calculation of RCS of a

Dielectric Sphere

The validation of the proposed singularity treatment is done by comparing the RCS of a di-

electric sphere with the analytical Mie’s series solution. The sphere parameters and calculation

frequency are f = 300 MHz, εr = 2.56 and µr = 1. The radius of sphere is 0.15λ
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Figure 5.3: RCS results comparison between VIE method and Mie-series with 32 cells
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Figure 5.4: RCS results comparison between VIE method and Mie-series with 280 cells
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Figure 5.5: RCS results comparison between VIE method and Mie-series with 912 cells



www.manaraa.com

81

5.7 Modeling Verification for Non-ferromagnetic Material

5.7.1 Experiment 1: Conductor Plate with a Rectangular Crack

The parameters of test experiment 1 [22] is shown in Tab. 5.1. The frequency is 900 Hz and

the corresponding skin-depth is δ = 3.033mm. The mesh size is Nx ×Ny ×Nz = 1× 8× 8.

Table 5.1: Coil and crack parameters for Team Workshop Problem 15

Coil Inner Raids,r1 6.15mm

Coil Outer Raids,r2 12.4mm

Coil Thickness 6.15mm

Number of Turns 3790

Liftoff 0.88mm

Crack Depth 5mm

Crack Width 0.28mm

Crack Length 12.6mm

Slab Thickness 12.22mm

Conductivity (MS/m) 30.6

Relative Magnetic Permeability, µr 1

Figure 5.6: The mesh of the crack region of TEM Problem 15
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The detailed comparison between the model predicted data and experimental data are

shown in Fig. 5.7 and Fig. 5.8.
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Figure 5.7: Comparison between experimental and theoretical result of resistance changes of

TEM Problem 15 at 900 Hz
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Figure 5.8: Comparison between experimental and theoretical result of reactance changes of

TEM Problem 15 at 900 Hz
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5.7.2 Experiment 2: Conductor Plate with a Semi-elliptical Crack

The parameters of test experiment 2 [16] is shown in Tab. 5.2. The frequency are 1027 Hz

and 2081 Hz and the corresponding skin-depth are δ = 3.31mm and δ = 2.325mm. The mesh

size is N = 96.

Table 5.2: Coil and crack parameters for experiment 2

Coil Inner Raids,r1 2.51mm

Coil Outer Raids,r2 7.38mm

Coil Thickness 4.99mm

Number of Turns 4000

Liftoff 0.3mm

Crack Depth 8.61mm

Crack Width 0.33mm

Crack Length 22.1mm

Slab Thickness 24mm

Conductivity (MS/m) 22.62

Relative Magnetic Permeability, µr 1

Figure 5.9: The mesh of the crack region of experiment 2
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The detailed comparison between the model predicted data and experimental data are

shown in Fig. 5.10 and Fig. 5.13.
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Figure 5.10: Comparison between experimental and theoretical result of resistance changes of

experiment 2 at 1027 Hz
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Figure 5.11: Comparison between experimental and theoretical result of reactance changes of

experiment 2 at 1027 Hz
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Figure 5.12: Comparison between experimental and theoretical result of resistance changes of

experiment 2 at 2081 Hz
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Figure 5.13: Comparison between experimental and theoretical result of reactance changes of

experiment 2 at 2081 Hz
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5.7.3 Experiment 3: Conductor Plate with a Through-thickness Crack

The parameters of test experiment 3 [99] is shown in Tab. 5.3. The frequency are 630 Hz

and 2500 Hz and the corresponding skin-depth are δ = 4.807mm and δ = 2.4131mm. The

mesh size is is Nx ×Ny ×Nz = 1× 15× 3.

Table 5.3: Coil and crack parameters for experiment 3

Coil Inner Raids,r1 4.975mm

Coil Outer Raids,r2 9.805mm

Coil Thickness 4.02mm

Number of Turns 399

Liftoff 0.05mm

Crack Depth 2mm

Crack Width 0.234mm

Crack Length 29.893mm

Slab Thickness 2mm

Conductivity (MS/m) 17.4

Relative Magnetic Permeability, µr 1

The detailed comparison between the model predicted data and experimental data are

shown from Fig. 5.14 to Fig. 5.19.
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Figure 5.14: Comparison between model prediction and experiment of resistance changes at

0.631 kHz
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Figure 5.15: Comparison between model prediction and experiment of resistance changes at

0.631 kHz
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Figure 5.16: Comparison between model prediction and experiment of resistance changes at

2.5 kHz
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Figure 5.17: Comparison between model prediction and experiment of resistance changes at

2.5 kHz
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Figure 5.18: Comparison between model prediction and experiment of resistance changes at 10

kHz
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Figure 5.19: Comparison between model prediction and experiment of resistance changes at 10

kHz
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CHAPTER 6. EXPERIMENTAL VALIDATION AND RESULTS OF

FERROMAGNETIC SPECIMEN

In this chapter, the coil impedance change due to non-through semi-elliptical notch in

ferromagnetic steel specimen is tested to obtain reference data results for comparison with

theoretical and computational models. First, eddy current metallic test specimens have been

designed, purchased and delivered for carrying out a series of controlled measurements on

simulated defects in the form of notches produced by electrical discharge machining (EDM).

316 and 304 austenitic stainless steel are used extensively in fast reactors for the reactor vessel,

primary pipe work, and heat exchangers and they are non-ferromagnetic. However, candidate

materials for fuel cladding and heater exchanger tube in fast reactors are likely to fall into

ferromagnetic steels, such as 9Cr-1Mo, oxide dispersion strengthened (ODS). etc. In particular

there has been a long standing effort in Japan and France (at CEA) to study the properties of

oxide dispersed steel (ODS), as a likely candidate for use in the high neutron flux environment

surrounding the nuclear fuel. Because ODS steel is not commonly available, we are using 440

SS test specimens with a high chrome content. These are likely to have similar electromagnetic

properties to those of ODS steel including a similar permeability. Then the experiments with

along-the-notch scan, across-the-notch scan and 2-D scan are carried out. The experimental

results are also compared with theoretical predictions based on numerical calculation. In order

to get the theoretical predictions, the conductivity σ and relative permeability µr of 440 SS

specimen are obtained first by using ACPD method [108, 109]. Then the coil liftoff from the

specimen surface was determined based on the multi-frequency impedance data and theoretical

model correlation. In the end, good agreement is obtained between measurement data and

model prediction.
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6.1 Eddy-current Impedance Measurement System

Eddy current inspection under fast reactor coolant particularly sodium will require a high

performance test instrument. The system we have chosen is based on a lock-in amplifier from

Zurich Instruments. In order that it operates as a key component in an eddy current test system

we have added auxiliary circuits included a precision resistor with the aim of achieving a high

sensitivity measurements and automatic data acquisition of the eddy current probe impedance

changes due to flaws.

The eddy-current impedance measurement system, which includes two sub-systems: the

signal acquisition system and the DUT-probe system, is set up first. The signal acquisition

system, Fig. 6.2, is primarily responsible for the probe signal sampling, quantization, post-

processing, data storage and communication with control-computer. This subsystem comprises

power supply, lock-in amplifier and impedance add-on module. Voltage amplitude and phase

measurements of the probe can be made accurately using the lock-in amplifier. The one being

used in this project from Zurich Instruments is shown in Fig. 6.2. In order to convert the

voltage data to a change in impedance, an add-on circuit is needed.

Figure 6.1: Impedance add-on circuit structure

The basic configuration of add-on circuit is shown in Fig. 6.1. The trans-conductance

amplifier G provided current to the device under test (DUT). The lock-in amplifier measures
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both the potential drop across the DUT and the voltage drop across the standard resistor to

determine the impedance.

Figure 6.2: Eddy-current impedance measurement system which includes power supply, lock-in

amplifier and impedance add-on module

The add-on circuit together with a lock-in amplifier provides a digital output of the am-

plitude and phase of the input voltage which can be switched between the voltage across an

eddy current probe coil and the voltage across a known standard resistor carrying the probe

current. My colleague, Yuan Ji, did the circuit design, layout and debug. In order to make our

test system robust from power supply interference and ESD, the ESD protection and voltage

regulation are also integrated in the add-on circuit.

The DUT-probe system is shown in Fig. 6.3. The eddy-current probe, Fig.6.4, is mounted

on a computer-controlled z-stage with 5 micron resolution. The specimen is mounted on the

platform which constitutes xy-stage with 5 micron resolution, a rotary stage and a manually
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adjusted tilt stage from bottom up. In order to have a quick and stable connection to the

probe, the BNC connector is used as a standard connection type for all the probes.

Figure 6.3: Experimental bench used to measure the coil impedance change due to the narrow

notch in the 440SS steel slab

Figure 6.4: Eddy-current probe structure
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6.2 Measurement of Conductivity and Permeability

In predicting the eddy current probe signals due to notches in ferromagnetic material it

is necessary to know both the electrical conductivity σ and relative magnetic permeability µr

of the material. Although eddy current measurements of conductivity can be done reliably

for non-magnetic material, it has inherent uncertainties for magnetic material. This is due to

the fact that eddy current probe impedance changes on an unflawed plate at moderate high

frequencies depends on the product of the conductivity and permeability. At low frequencies

the parameters are to some extent separable, a least in principle but the eddy current signal

weakens and becomes less easy to measure. This is because the induced current is depends on

the rate of change of the field which diminishes as the frequency is decreased.

A more effective way of finding both electrical conductivity and magnetic permeability ac-

curately is by using a four point probe [108]. Because the current is injected via two contact

pins there is no inherent reduction in the injected current as a function of frequency and mea-

surement can be carried out with a DC current or preferably at very low frequency to eliminate

thermal-electric effects. The measurements of potential drop using two pick-up pins at low

frequency is then depended on conductivity with very little contribution from the permeability.

This happen when the skin depth is much greater that the pin separation. At high frequency,

the pick-up voltage is like the eddy current measurement; dependent on the product of elec-

trical conductivity and permeability, but as one approaches the direct current limit, it tends

toward a dependence on conductivity only.

The ACPD test bench is shown in Fig. 6.5, which comprises platform, specimen and probe

from bottom up. In order to observer the in-homogeneous properties of material conductivity

and permeability due to different positions, the test is repeated four times at different positions.
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Figure 6.5: ACPD test bench for measuring specimen conductivity and permeability
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Figure 6.6: The variation of specimen conductivity and permeability in terms of position

The result are shown in Fig. 6.6. The conductivity has the mean σ = 1.41Ms/m and 0.4%

variation. The permeability has the mean µr = 70.3 and 2% variation.
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6.3 Experiment Data for a Ferromagnetic Steel Specimen with a

Semi-elliptical Notch

6.3.1 13 mm Thick Slab Specimen

The 13mm 440SS steel specimen has the dimension 100mm×100mm×13mm (L×W ×H).

The semi-elliptical notch is located at the center with the dimension 8.026mm × 0.16mm ×

1.999mm, Fig. 6.7.

Figure 6.7: Thick 440SS steel slab specimen with semi-elliptical notch

Figure 6.8: 8 mm notch (middle one) in 13mm thick specimen with the EDM cutting tool

6.3.1.1 Liftoff Determination by Multi-frequency Scan

In order to determine the probe liftoff, the impedance variation due to the presence of the

flawless specimen is obtained at different frequency. Then the theoretical equivalent liftoff is

obtained by fitting the multi-frequency impedance variation data via the theoretical impedance

variation formulation, Eq. 4.30. The theoretical and experimental data comparison are shown
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in Fig. 6.9 and 6.10. The equivalent liftoff 0.82 mm is used.
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Figure 6.9: The resistance change of a circular coil above a flawles 440SS slab as a function of

frequency
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Figure 6.10: The reactance change of a circular coil above a flawles 440SS slab as a function of

frequency
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6.3.1.2 Impedance Variation along the Notch

In this experiment, the eddy-current probe is scanned along the notch, Fig. 6.11. Sev-

eral frequencies are tested. More detailed parameters of eddy-current probe, test specimen,

notch size and test conditions are shown in Tab. 6.1. The comparison between prediction and

experimental data are summarized as follows.

(a) Eddy current coil is centered above the notch

(b) Eddy current coil is centered above the notch

and scaned along the notch

Figure 6.11: Along the notch scan diagram
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Table 6.1: Probe coil 1, 13 mm specimen and notch parameters

Coil Inner Radius,r1 2.82 mm

Coil Outer Radius,r2 4.51 mm

Coil Width 1.78 mm

Number of Turns 306

Liftoff 0.82 mm

Notch Depth 1.999 mm

Notch Width 0.160 mm

Notch Length 8.026 mm

404SS Steel Specimen Thickness 13 mm

Conductivity (MS/m) 1.41

Relative Magnetic Permeability, µr 70.3
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Figure 6.12: Comparison between model prediction and experimental data of resistance varia-

tion at 3 kHz
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Figure 6.13: Comparison between model prediction and experimental data of reactance varia-

tion at 3 kHz
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Figure 6.14: Comparison between model prediction and experimental data of impedance vari-

ation in impedance plane at 3 kHz
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Figure 6.15: Comparison between model prediction and experimental data of resistance varia-

tion at 4 kHz

-15 -10 -5 0 5 10 15
Y (mm)

-0.02

0

0.02

0.04

∆
 X

c 
(Ω

)

VIE Model
Experimental Data

Figure 6.16: Comparison between model prediction and experimental data of reactance varia-

tion at 4 kHz
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Figure 6.17: Comparison between model prediction and experimental data of impedance vari-

ation in impedance plane at 4 kHz
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Figure 6.18: Comparison between model prediction and experimental data of resistance varia-

tion at 5 kHz
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Figure 6.19: Comparison between model prediction and experimental data of reactance varia-

tion at 5 kHz
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Figure 6.20: Comparison between model prediction and experimental data of impedance vari-

ation in impedance plane at 5 kHz
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6.3.1.3 Impedance Variation across the Notch

In this experiment, the eddy-current probe is scanned across the notch, Fig. 6.21. Sev-

eral frequencies are tested. More detailed parameters of eddy-current probe, test specimen,

notch size and test conditions are shown in Tab. 6.1. The comparison between prediction and

experimental data are summarized as follows.

(a) Eddy current coil is centered above the notch

(b) Eddy current coil is centered above the notch

and scaned across the notch

Figure 6.21: Across the notch scan diagram
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Figure 6.22: Comparison between model prediction and experimental data of resistance varia-

tion at 3 kHz
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Figure 6.23: Comparison between model prediction and experimental data of reactance varia-

tion at 3 kHz
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Figure 6.24: Comparison between model prediction and experimental data of impedance vari-

ation in impedance plane at 3 kHz
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Figure 6.25: Comparison between model prediction and experimental data of resistance varia-

tion at 4 kHz
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Figure 6.26: Comparison between model prediction and experimental data of reactance varia-

tion at 4 kHz
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Figure 6.27: Comparison between model prediction and experimental data of impedance vari-

ation in impedance plane at 4 kHz
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Figure 6.28: Comparison between model prediction and experimental data of resistance varia-

tion at 5 kHz

-15 -10 -5 0 5 10 15
Y (mm)

-0.06

-0.04

-0.02

0

0.02

0.04

∆
 X

c 
(Ω

)

VIE Model
Experimental Data

Figure 6.29: Comparison between model prediction and experimental data of reactance varia-

tion at 5 kHz
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Figure 6.30: Comparison between model prediction and experimental data of impedance vari-

ation in impedance plane at 5 kHz
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Figure 6.31: Comparison between model prediction and experimental data of resistance varia-

tion at 7 kHz
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Figure 6.32: Comparison between model prediction and experimental data of reactance varia-

tion at 7 kHz
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Figure 6.33: Comparison between model prediction and experimental data of impedance vari-

ation in impedance plane at 7 kHz
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From the comparison, we can find the good agreement between the model prediction and

experimental data is achieved. Besides, we can find the along-the-notch scan data is more

noisy then that of across-the-notch data. The reason might be that the interaction between

nearby notch due to there is not enough distance between three notches in the along-the-notch

direction. On the contrary, there is no other notch in the across-the-notch direction.
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Figure 6.34: Impedance real part variation contour of 13mm specimen at 10kHz with semi-

elliptical notch based on experiment
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Figure 6.35: Impedance imaginary part variation contour of 13mm specimen at 10kHz with

semi-elliptical notch based on experiment
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6.3.1.4 Impedance Variation 2-D Image

There are many factors which could introduce impedance change noise. For example the

specimen surface curve, in-homogeneous of material properties. residual stress etc. In order to

have a better observation about the impedance variation in terms of position, the impedance

change image is obtained by the 2D impedance scan, Figs. 6.34 and 6.35.

From the 2-D impedance variation image, we can clearly observe the linear pattern of the

reactance part due to the lift-off variation caused by specimen curve.

6.3.2 3 mm Thin Slab Specimen

The 3mm 440 SS slab specimen has the dimension 100mm×100mm×2.93mm (L×W×H).

The semi-elliptical notch is located at the center with the dimension 6.026mm × 0.146mm ×

1.504mm, Fig. 6.36. More detailed parameters of eddy-current probe, test specimen, notch size

and test conditions are shown in Tab. 6.2.

Figure 6.36: Thin 440SS steel slab specimen with semi-elliptical notch

Figure 6.37: 6 mm notch in 3mm thick specimen with the EDM cutting tool
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6.3.2.1 Impedance Variation along the Notch

In this experiment, the eddy-current probe is scanned along the notch. The frequency is

10 kHz and the corresponding skin-depth is δ = 0.5066mm. Note that the electrical field

interaction is dominant due to that the magnetic field intensity is tangential to the notch

surface. The mesh size used in calculation is Nx ×Ny ×Nz = 1× 10× 40.

Table 6.2: Probe coil 1, 3 mm specimen and notch parameters

Coil Inner Radius,r1 2.82 mm

Coil Outer Radius,r2 4.51 mm

Coil Width 1.78 mm

Number of Turns 306

Liftoff 0.4 mm

Notch Depth 1.504 mm

Notch Width 0.146 mm

Notch Length 6.026 mm

404SS Steel Specimen Thickness 2.93mm

Conductivity (MS/m) 1.41

Relative Magnetic Permeability, µr 70.3

The comparison between the model predicted data and experimental data are shown in

Fig. 6.38 and Fig. 6.39 and the good agreement is achieved. The RMS impedance noise of the

circuit is about 2 mΩ. The discrepancy away from the notch could be caused by inhomogeneous

of steel conductivity, permeability, lift-off variation due to non-flat surface and residual stress

due to the fabrication procedure. Besides, the constant relative permeability is assumed and

this might not be good enough to characterize the ferromagnetic metal.
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Figure 6.38: Comparison between model prediction and experiment data of resistance variation

at 10 kHz
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Figure 6.39: Comparison between model prediction and experiment data of reactance variation

at 10 kHz
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6.3.2.2 Impedance Variation across the Notch

The experiment with the eddy-current probe scan cross over the notch is carried out. The

parameters of test experiment are the same as Tab. 6.2. The comparison between model

prediction and experimental data are shown in Figs. 6.40 and 6.41.
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Figure 6.40: Comparison between model prediction and experiment of resistance changes at 10

kHz for across-the-notch scan
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Figure 6.41: Comparison between model prediction and experiment of reactance changes at 10

kHz for across-the-notch scan
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Figure 6.42: Comparison between model prediction and experiment of resistance changes at 10

kHz for both scans
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Figure 6.43: Comparison between model prediction and experiment of resistance changes at 10

kHz for both scans
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Contrary to along-the-notch scan, the magnetic field interaction is stronger due to that

the magnetic field intensity is mostly perpendicular to the notch surface. And this causes an

interesting effect on the impedance change that the across-the-notch scan has opposite effect

on the impedance change, Figs 6.42 and 6.43. This means one introduces a local maximum

point and another will cause a local minimum point. Compared with non-ferromagnetic metal

result, this is special to ferromagnetic metal and might be useful to distinguish the real crack

signal from disturbing signals. For better comparison, the impedance variation of both scans

are shown in Fig.6.42 and Fig. 6.43.

6.3.2.3 Impedance Variation 2-D Image

There are many factors which could introduce impedance change noise. For example in-

homogeneous of material properties. residual stress etc. In order to have a better observation

about the impedance variation in terms of position, The impedance change image is obtained

by the 2D impedance scan, Figs. 6.44 and 6.45.
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Figure 6.44: Impedance real part variation contour of 3mm specimen at 10kHz with semi-

elliptical notch
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Figure 6.45: Impedance imaginary part variation contour of 3mm specimen at 10kHz with

semi-elliptical notch

From the 2-D impedance variation image, we can clearly observe the linear pattern of the

reactance part due to the lift-off variation caused by specimen curve. Besides, the opposite

effect between along-the-notch scan and across-the-notch scan can also be found.

6.4 Liftoff Effect on Probability of Detection

The liftoff will affect the impedance variation significantly. In this section, we analyze the

different liftoff effect on the impedance change signal quality. The specimen used in this test

is the 13mm 440 stainless steel and the probe coil 1.

The liftoff is from 1.35mm to 6.35mm with the step 1mm and denoted as No.1 to No.6. The

test frequency is 10kHz. The real part of impedance variation contour are shown as follows:
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Figure 6.46: The real part of impedance variation contour in terms of different liftoff based on

experiment
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The imaginary part of impedance variation contour are shown as follows:
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Figure 6.47: The imaginary part of impedance variation contour in terms of different liftoff

based on experiment
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As the liftoff increases, the crack signal will decrease due to the bigger liftoff compared with

the baseline. Hence the probability of detection (POD) the rack will decrease. A classic POD

model can be expressed as with logic link function in terms of crack length [110]

POD(x) =
eβ0+β1 ln(x)

1 + eβ0+β1 ln(x)
(6.1)

Where x is the crack size and POD is the corresponding probability. β0 and β1 are the coeffi-

cients which can be estimated as the well-known linear regression estimates of ln
[

POD
1−POD

]
on

ln(x).

Similarly, here a modified POD formulation for the effect of liftoff can be written as

POD(x) =
1

1 + eβ0+β1 ln(x)
(6.2)

or

ln

[
1− POD
POD

]
= β0 + β1 ln(x) (6.3)

Where x is the liftoff and POD is the corresponding probability. β0 and β1 are the coefficients

which can be estimated by the linear regression estimates of ln
[

1−POD
POD

]
on ln(x). Then the

POD is obtained as shown in Fig.6.48
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Figure 6.48: The POD curve as a function of liftoff
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6.5 The Comparison of the Impedance Variation between Ferromagnetic

and Non-ferromagnetic Steel

In order to have a better understanding of the effect on the impedance changes due to

the ferromagnetic steel, the 2-D impedance variation simulation based on our numerical model

is done for both ferromagnetic 440 steel and non-ferromagnetic steel. The probe, notch size

and specimen parameters are the same, shown in Tab. 6.1, except the relative permeability of

non-ferromagnetic steel is 1. The frequency is set as 5 kHz in all the simulation. The results

of simulation are summarized as follow.
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Figure 6.49: The simulated 2-D resistance variance due to the semi-elliptical notch of ferro-

magnetic steel
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Figure 6.50: The simulated 2-D resistance variance due to the semi-elliptical notch of non-

ferromagnetic steel
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Figure 6.51: The simulated 2-D reactance variance due to the semi-elliptical notch of ferromag-

netic steel
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Figure 6.52: The simulated 2-D reactance variance due to the semi-elliptical notch of non-

ferromagnetic steel

From the simulation, we can find an interesting phenomenon. The impedance variation of

ferromagnetic steel along the notch scan and across the notch scan will have opposite sign.

However, both scans will have the same sign for non-ferromagnetic conductor.
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CHAPTER 7. ARBITRARY ORIENTATION INDUCTION COIL

INTERACTING WITH CYLINDRICAL STRUCTURES

(A draft journal paper)

7.1 Abstract

We determine the electromagnetic field of an induction coil orientation with respect to a

nearby conductive tube. The results can be used in modeling inspection for flaws or for sensing

the location of a cylindrical surface. To derive the expressions for the coil field, we determine

first the field of a circular current filament. The coil field is then obtained by integration of

the filament field over the coil cross-section. Expressions for the electromagnetic field of an

internal or external coil in the vicinity of a tube can be determined in this way. Also the coil

impedance variation can be evaluated accounting for the effect of frequency, angle of azimuthal

rotation and of polar tilt as well as the coil location with respect to the tube. Applications of

the results include inductive position sensing and eddy current nondestructive evaluation.

7.2 Introduction

The analysis of circular coil fields and their interaction with conductive plates and circular

rods or the corresponding planar and cylindrical layered systems are studied to enhance the

theory of induced current and its applications. An important motivation for the analysis is to

produce formula that are available for fast and accurate calculations and which can be easily

embedded in codes that predict numerical results for a variety of configurations. At an early

stage in these developments, analytical formula were found for the field and impedance of a

circular coil whose axis is normal to the surface of a planar plate and a coil coaxial with a
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circularly cylindrical conductor such as a tube[9], a configuration that is used for example

in the inspection of heat exchanger tubes by bobbin coils in the power industry. Following

these early results, expression have been derived for the field of an arbitrary tilted coil above

a plate [34] and recently for the case of a circular coil whose axis is arbitrary with respect to

the axis of a tube or hole [24]. In this article we give an alternative solution to this problem.

The analysis of coil-tube interaction in general, requires two coordinate systems; one local

and one global, the latter being cylindrical coordinates referenced to the tube axis. The free

space electromagnetic field due to a arbitrary source coil is a solution of Laplace equation

which can be epressed as general form in cylindrical coordinates. The field equation contains

an arbitrary source function and in general its derivation will require local coordinates. A basic

example of an eddy current problem using two coordinate systems is that of a coil whose axis is

parallel to that of a tube [32]. In that case we simply have two cylindrical coordinate systems

with parallel axes. In another example, the axis of a circular induction coil is perpendicular

to that of a uniform bore-hole or tube. The analytical expression for the field and impedance

of a coil in this case was found by using the Biot-Savart law to give a result in terms of

an infinite integral [27]. This is done first for a circular filament and the result integrated

over the coil cross section to get the coil field. Later, the derivation of the circular filament

field with its axis perpendicular to that of a tube was formulated as a single layer potential

problem [111, 20]. This means that the scalar potential represents the filament field in a way

that is analogous to that of a uniformly charged disk; a problem in which there is a jump in

the normal gradient of the scalar potential across the disc. An integral expression for the coil

source function was derived in integral form and then expressed in series form convenient for

numerical calculations. Practical applications of this configuration include a circumferentially-

sensitive pancake coil array and a rotary probe in a tube. In this article, we take a similar

approach to that in [111] but extend the analysis to determine the coil function for one with an

arbitrary orientation using cylindrical polar and Cartesian coordinates for both local and global

coordinate systems. The solution is in the form of a integral but this could be transformed into

series form by using the similar procedure to that in [104]. The coil field once calculated can

be used as the incident field in the integral equation for the numerical calculation of coil-flaw
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z

x0

Figure 7.1: A circular induction coil of arbitrary orientation inside a conductive tube

interaction. Then the impedance variation due to a flaw can be determined by using reciprocity

and the volume equivalence principle [104]. In addition, one can potentially use the present

solution as the foundation for including the effect a ferrite core on the probe field [49, 112].

7.3 Field Analysis

7.3.1 Scalar Decomposition of the Field

A quasi-static time-harmonic field varying as the real part of e−iωt can be represented by

the transverse electric (TE) potential ψ1 and transverse magnetic (TM) potential ψ2 defined

with respect to the unit vector ẑ, which is the direction of the global coordinate axis and also

the tube axis, Fig. 7.1. In the source-free region, we can express the magnetic field intensity as

H = ∇×∇× (ẑψ1) + k2∇× (ẑψ2) (7.1)

and electric field intensity as

E = iωµ [∇× (ẑψ1) +∇×∇× (ẑψ2)] (7.2)

where k2 = iωµ0µrσ, with µ0 the free space permeability, µr is the relative permeability of the

tube material and σ is the electric conductivity of the material. For a conductive region both

scalar potentials satisfy the Helmholtz equation

(∇2 + k2)ψi = 0 i = 1, 2. (7.3)
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Figure 7.2: Circular filament centered at the point Q in the plane x0 = x′0 having radius ρ0.

The azimuthal rotation angle is φ and θ is the polar tilt angle.

For non-conductive regions, k2 = 0 and the transverse potentials satisfy the Laplace equation.

In which case (7.1) reduces to

H = ∇∂ψ1

∂z
. (7.4)

Note that the magnetic field is defined solely in terms of the TE potential ψ1 in a non-conductive

region. This is similar to the case where the magnetic field is written in terms of a magnetic

scalar potential as H = ∇Φ. In both cases we have to deal with a conflict with Ampère’s law

which requires that ∇×H 6= 0 in region where electric current flows. Even if an explicit field

representation in the region of the current is not used, we still have to avoid a conflict with

the circuital law. The difficulty is traditionally overcome by introducing a discontinuity in the

magnetic potential [95], in which case it is referred to as a double layer potential; physically

equivalent to a magnetic dipole layer. In effect a surrogate source has been introduced that

gives rise the same field as the filament current. Similarly with the TE potential, one chooses

the appropriate discontinuity to be in the normal gradient of ψ1 at a planar circular surface

bounded by the current filament in which case the discontinuity in the TE scalar function

means it is a single layer potential [113].

7.3.2 Field of a Circular Current Filament

Consider a circular filament centered at point Q, Fig. 7.2, coaxial with the local x0-

coordinate axis. Relative to the global x-axis, the x0-axis can be located by an azimuthal

rotation through an angle φ about a point P located at (x, y, z) = (x1, 0, 0). Also the z0-axis
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is tilted through a polar angle θ relative to the line PV which is parallel to the global z-axis

while the x0 rotates and the y0 axis remains in the xy−plane. The filament lies in the plane

x0 = x′0 where x′0 is a constant for a given filament. Later we treat x′0 and the filament radius,

ρ′0, as a variables of integration to determine the coil field from that of the filament.

The magnetic field of the filament expressed in terms of the TE potential ψ0, defined with

respect to x0-direction is H = ∇×∇× (x̂0ψ0) but again the potential satisfies Laplace equation

in which case

H = ∇∂ψ0

∂x0
. (7.5)

Recovering a solution in terms of ψ1 is done by simply using

∂ψ1

∂z
=
∂ψ0

∂x0
(7.6)

To ensure the continuity of tangential electric field, ψ0 must be continuous on S0. To

conform to a restricted form of the circuital law, that the line integral cannot cross the chosen

surface bounded by the filament, we introduce the following discontinuity on S0[
∂ψ0

∂x0

]
S0

= −I, (7.7)

where the subscripted square bracket indicates the discontinuity at the surface S0.

Since ψ0 is a solution of the Laplace equation, it can be expressed using Fourier transforms

and cylindrical polar coordinates defined with respect to the z-axis as

ψ0(r) =
I

4π2

∞∑
m=−∞

eimϕ
∞∫
−∞

Dm(υ)
Im(|υ|ρ)

Km(|υ|ρ)
eiυzdυ

ρ < s1

ρ > s2

, (7.8)

where the source function, Dm(υ), is to be determined in the present case for a filament in

the plane x0 = x′0 centered at Q, Fig. 7.2 . The radial limit, s1 is the upper limit of the

solution containing Im(|υ|ρ) which is the shortest distance between the z−axis and a point on

the filament. Similarly, the lower radial limit of the Km(|υ|ρ) solution, s2, is the largest radial

distance between the z−axis and a point on the filament. We shall not need the solution in

the region s1 < ρ < s2.



www.manaraa.com

130

α

κ
β

ζχ

Figure 7.3: Triangle used to relate addition theorem variables using the cosine rule.

By using Green’s second theorem [89] for a single layer potential, ψ0 can be determined

from

ψ0 = I

∫
S0

G(r|r′)dS′ = I

4π

∫
S0

1

R
dS′ (7.9)

where the integration with respect to the source coordinates is over the surface S0. A conse-

quence of the dependence of R on r− r′ is that we need a sign reversal compared with (7.6) to

get

∂ψ1

∂z
= −∂ψ0

∂x′0
. (7.10)

Once ψ0 is found, then ψ1 can be recovered from (7.10). Given that R can be expressed as

[114]

1

R
=

1

π

∞∑
m=−∞

eim(ϕ−ϕ′)
∫ ∞
−∞

Im(|υ|ρ<)Km(|υ|ρ>)eiυ(z−z′) dυ (7.11)

where ρ> is the greater and ρ< the lesser of ρ and ρ′ one can substitute (7.11) into (7.9) and

compare with (7.8) to get

Dm(υ) = e−imϕ
′
∫
S0

Km(|υ|ρ′)

Im(|υ|ρ′)
e−iυz

′
dS′

ρ < s1

ρ > s2

. (7.12)

where Dm(υ) is the filament source function which can be evaluated using a co-ordinate trans-

form.

7.3.3 Coordinate Transform

Next we consider the transformation of (7.12) to define a more tractable form for the

integration using Graf’s addition theorem [115]. It involves two relationships; one applicable

for ρ < s1 and the other for ρ > s2. Respectively these are

Kν(s)e−ıνχ =

∞∑
n=−∞

Kν+n(α)In(β)e−ınζ (7.13)
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Figure 7.4: Circular filament centered at point Q. The filament surface S0 intersects with y = 0

plane at the line AB

and

Iν(s)e−ıνχ =
∞∑

n=−∞
(−1)nIν+n(α)In(β)e−ınζ (7.14)

where the arguments are related by the cosine rule: κ2 = α2 + β2 − 2αβ cos ζ, applied to the

triangle shown in Fig. 7.3. We use (7.14) applied in the source integral in Eq. (7.12) when

ρ > s2, and the field is therefore represented by the singular Bessel function series. A similar

procedure is used for ρ < s1 and the roles of the Bessel functions are reversed.

The addition theorem is used with reference to 4RST, Fig. 7.4 and also with reference to

4RUT shown in Fig. 7.5, adjacent to 4RST. Applying the addition theorem to both triangles,

leads to a splitting of the integration into two parts at the line AB where the filament disk

intersects the y = 0 plane. We shall define the limits of the integration at this boundary using

a local Cartesian coordinates x0, y0, z0.

With the origin of the local coordinates on the x axis at x = x1; the point P in Fig. 7.2,

global coordinates are related to the local coordinates as follows:

x = x0 cosφ cos θ − y0 sinφ− z0 cosφ sin θ + x1 (7.15)

y = x0 cos θ sinφ+ y0 cosφ− z0 sin θ sinφ (7.16)

z = x0 sin θ + z0 cos θ (7.17)

The surface S0, bounded by the filament, is in the plane x0 = x′0 and coaxial with the x0



www.manaraa.com

132

A

x

y

x

z
0

Q

0

P

y
0

B

R

ϕ′

ρ′

φ

φ π
2

+

S

U

φπ
2

T

Figure 7.5: Plan view of the xy-plane intersected by the circular filament centered at Q.

axis. We shall use equations for the x0 and y0 coordinates of points on the line AB expressed

as linear functions of z0 in order to define the integration over S0 in local coordinates. From

(7.16) with y = 0 and x0 = x′0, perpendicular distance from the y0 = 0 plane to a point on AB,

Fig. 7.6, is given by

Y0(z0) = tanφ
(
z0 sin θ − x′0 cos θ

)
. (7.18)

Similarly, the perpendicular distance from the z0 = 0 plane to a point on AB is given by

Z0(y0) =
x′0

tan θ
+

y0

tanφ sin θ
(7.19)

To define the perpendicular distance from a point on the z axis to a point on AB, Fig. 7.3, we

put x0 = 0, and y0 = Y0(z0) in (7.15) and with x0 = x′0 for any point on S0, we get

X(z0) =
cos θ

cosφ
x′0 −

sin θ

cosφ
z0 + x1. (7.20)

In applying the addition theorem, we let κ = |υ|ρ′, α = |υ|X(z0) and β = |υ|(y′0 − Y0(z0))

for ρ > s2 and ϕ′ > 0 to get

Im(|υ|ρ′)e−ımϕ′ =

∞∑
n=−∞

(−1)nIm+n(|υ|X)In(|υ|[y′0 − Y0])e−ın(π
2
−φ). (7.21)

For ϕ′ < 0,

Im(|υ|ρ′)e−ımϕ′ =

∞∑
n=−∞

(−1)nIm+n(|υ|X)In(|υ||y′0 − Y0|)eın(π
2

+φ). (7.22)
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Figure 7.6: Integration over the surface S0 bounded by the circular filament is divided at

the line AB into two parts. The linear function Y0(z0), shown in the diagram, defines the

perpendicular distance of this line from the plane y0 = 0. In carrying out the intergration over

z′0 one needs to set the limits at the filament and at the line AB depending on the value of y′0.

The integration over the filament disk is with respect to the local source coordinates y′0 and z′0.

The limits of the integration wth respect to y′0 are defined using the points yA, and yB which

are y0-coordinates of the points A and B, Fig. 7.6. The limits are also defined by the filaments

boundary at which

y2
0 + z2

0 = ρ2
0. (7.23)

For the case where ϕ′ > 0 the y′0 integral is from yB to ρ0. For the case where ϕ′ < 0 the

integration is from −yA to ρ0 To find expressions for yA, and yB, put y0 = Y0(z0) in (7.23) to

find points on the line AB. Then use the resulting equation to eliminate z0 from (7.18). The

result is a quadratic equation for Y0 whose solutions are

yA =
−x′0 cosφ sinφ cos θ + ξ

cos2 φ+ sin2φ sin2 θ
(7.24)

yB =
−x′0 cosφ sinφ cos θ − ξ

cos2 φ+ sin2φ sin2 θ
(7.25)

where

ξ = sinφ sin θ
√
ρ2

0

(
cos2φ+ sin2φ sin2 θ

)
− x′0

2sin2φ cos2 θ (7.26)

The limits of z′0 are determined by the line AB and the filament itself, Fig. 7.6. For ϕ′ > 0, the

low limit of the integration with respect to z′0 is −a(y′0) where a(y′0) =
√
ρ2

0 − y′20 , taking the

positive root. But the upper limit is Za(y
′
0) defined as a piece-wise function

za(y
′
0) =

 Z0(y′0) yB ≤ y′0 < yA

a(y′0) yA ≤ y′0 < ρ0

(7.27)
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Similarly, for ϕ′ < 0, the low limit of integration is Zb(y
′
0) defined as

zb(y
′
0) =

 −a(y′0) −ρ0 ≤ y′0 < yB

Z0(y′0) yB ≤ y′0 < yA

(7.28)

and the upper limit is a(y′0).

Now by substituting (7.21) and (7.22) into (7.12) and applying the limits discussed above,

we can rewrite (7.12) as

Dm(υ) =
∞∑

n=−∞
ein(π

2
+φ)


ρ0∫

yB

za∫
−a

Im+n(|υ|X)In
(
|υ|[y′0 − Y0]

)
e−iυz

′
dz′0 dy

′
0 +

(−1)n
yA∫
−ρ0

a∫
zb

Im+n(|υ|X)In(|υ||y′0 − Y0|)e−iυz
′
dz′0 dy

′
0


(7.29)

where z′ = x′0 sin θ+z′0 cos θ using the coordinate transform (7.17), a =
√
ρ2

0 − y′0
2 and note

that Y0 is a function of z′0.

Now we have transformed the global prime source coordinates of source coefficient calcula-

tion into local prime source coordinates. Note that the above derivation has included the effect

of filament offset on the x0 axis so as to simplify the derivation of source coefficient of coil. In

order to verify and get the insights of the effect of either azimuthal or polar tilt, the azimuthal

and polar tilt special case will be analyzed separately.

7.3.4 Circular Filament with an Azimuthal Tilt

When the polar tilt angle θ = 0◦, the filament has only an azimuthal tilt. The filament is

centered at point P and the z0-axis, referring to Fig. 7.2, now becomes parallel to z-axis of the

global coordinate. By substituting θ = 0◦ into (7.18), (7.20), (7.24) and (7.25), we get

Y0 = −x′0 tanφ (7.30)

X =
x′0

cosφ
+ x1 (7.31)

yA = yB = −x′0 tanφ (7.32)
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Similarly, za, zb and z′ can be reduced as following by setting θ = 0◦

za = −zb =

√
ρ2

0 − y′0
2 (7.33)

z′ = x′0 sin θ + z′0 cos θ = z′0 (7.34)

Substituting these equations back into (7.29) and putting ∆ρ = x′0 tanφ, we get

Dm(υ) =
2

υ

+∞∑
n=−∞

ein(π
2

+φ)Im+n(|υ|X) [fn(−∆ρ,−∆ρ, ρ0) + (−1)nfn(∆ρ,∆ρ, ρ0)] (7.35)

where

fn(r1, r2, ρ0) =

∫ ρ0

r1

In(|υ||ξ − r2|) sin(υ
√
ρ2

0 − ξ2)dξ (7.36)

and we use ∫ √ρ20−y′02
−
√
ρ02−y′0

2
e−iυz

′
0dz′0 =

2

υ
sin(υ

√
ρ2

0 − y′0
2) (7.37)

due to that the Bessel function Im+n and In are independent from z′0 and the inner integral

can be evaluated analytically.

Note that if the tilt angle φ is big enough or the circular coil is long in the axial direc-

tion, some filaments of the coil might be totally above or below the xz-plane. Then only one

fn(r1, r2, ρ0) function in (7.35) will be included and the integral limit will from −ρ0 to ρ0.

7.3.5 Circular Filament with a Polar Tilt

When the polar tilt angle φ = 0◦, the filament has only a polar tilt as shown. The y0-axis,

referring to Fig. 7.2, now becomes parallel to y-axis of the global coordinate. By substituting

φ = 0◦ into (7.18), (7.20), (7.24) and (7.25), we get

Y0 = 0 (7.38)

X = x′0 cos θ − z′0 sin θ + x1 (7.39)

yA = yB = 0 (7.40)

Similarly, za, zb and z′ can be reduced as following by setting φ = 0◦

za = −zb =

√
ρ2

0 − y′0
2 (7.41)

z′ = x′0 sin θ + z′0 cos θ (7.42)
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Substituting these equations into (7.29), we get

Dm(υ) = 2
+∞∑

n=−∞
cos
(nπ

2

)
e−iυx

′
0 sin θ

∫ ρ0

0
In(|υ||y′0|)

∫ √ρ20−y′02
−
√
ρ20−y′0

2
Im+n(|υ|X)e−iυz

′
0 cos θdz′0dy

′
0

(7.43)

After integrating with respect to y′0 and z′0 over the surface of the filament disk, the source

coefficient Dm(υ) for ρ > s2 can be obtained. Note that only even n is needed to calculate the

Dm(υ) since it will vanish for odd n.

7.3.6 Rotary Filament

The rotary filament case can be gotten easily by setting θ = 0◦ and φ = 0◦. It also can be

achieved by setting θ = 0◦ for polar tilt case or setting φ = 0◦ for azimuthal tilt case. Here we

substitute θ = 0◦ into the expressions of the polar tilt case. Then (7.42) and (7.39) reduce to

z′ = z′0 (7.44)

X = x′0 + x1 (7.45)

Substituting these two equations into (7.43) and using (7.37), Dm(υ) reduces to

Dm(υ) =
4

υ

+∞∑
n=−∞

cos
(
n
π

2

)
Im+n(|υ|X)

∫ ρ0

0
In(|υ||y′0|) sin(υ

√
ρ2

0 − y′0
2)dy′0 (7.46)

Note that only even n is needed to calculate the Dm(υ) since it will vanish for odd n.

7.4 Free Space Coil Field

Now we know how to get TE potential ψ0 for filament with arbitrary orientation. Similarly,

we express ψ1 for the coil in free space just as we have ψ0 for the circular filament

ψ1(r) =
I

4π2

∞∑
m=−∞

eimϕ
∫ ∞
−∞

Cm(υ)
Im(|υ|ρ)

Km(|υ|ρ)
eiυzdυ

ρ < β1

ρ > β2

. (7.47)

where the radial limits, β1 and β2, are respectively the shortest and longest distances from

z-axis to a point on the coil. Associated Bessel function Im(z) is used for ρ < β1 and Km(z) is

used for ρ > β2.
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Figure 7.7: The cross-section view of a circular coil at y = 0 plane with polar tilt angle θ is

shown in dashed outline. The coil is centered at point P and one filament loop of the coil is

also shown to illustrate the filament superposition

By using (7.10) and integrating the filament field with respect to x′0 and ρ0 over the coil

cross-section, we obtain the source coefficient for the coil field

Cm(υ) =
−ν
iυ

r2∫
r1

[
Dm(υ, x′0 = l/2)−Dm(υ, x′0 = −l/2)

]
dρ0 (7.48)

where ν = N/l(r2 − r1) is the turns density of the coil, N is filament turns of a coil, l is the

length of coil in the axial direction. r1 and r2 are the inner radius and outer radius of the coil

separately shown in Fig. 7.7.

For azimuthal tilt, substituting (7.35) into (7.48), Cm(υ) is expressed as

Cm(υ) =
−2ν

iυ2

+∞∑
n=−∞

ein(π
2

+φ)[Im+n(|υ|| l

2 cosφ
+ x1|)

− (−1)nIm+n(|υ|| −l
2 cosφ

+ x1|)]

× [Fn(r1, r2,−∆ρ) + (−1)nFn(r1, r2,∆ρ)]

(7.49)

where

Fn(χ1, χ2, η) =

χ2∫
χ1

ρ0∫
η

In(|υ||ξ − η|) sin(υ
√
ρ2

0 − ξ2)dξdρ0 (7.50)

We can find Cm(υ) is an odd function of υ.

For polar tilt, substituting (7.43) into (7.48), Cm(υ) is expressed as

Cm(υ) =
−2ν

iυ

+∞∑
n=−∞

cos
(nπ

2

) [
e−iυ

l
2

sin θ − eiυ
l
2

sin θ
]
Fn(υ) (7.51)
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Fn(υ) =

r2∫
r1

ρ0∫
0

In(|υ||y′0|)
a∫
−a

Im+n(|υ|X)e−iυz
′
0 cos θdz′0dy

′
0dρ0 (7.52)

where a =
√
ρ2

0 − y′0
2 and note that Cm(υ) = 0 for all odd n and conjugates of Cm(−υ) and

Cm(υ).

For rotary Coil, substituting (7.46) into (7.48), Cm(υ) is expressed as

Cm(υ) =
−4ν

iυ2

+∞∑
n=−∞

cos
(
n
π

2

)
×
[
Im+n(|υ||x1 +

l

2
|)− Im+n(|υ||x1 −

l

2
|)
]

×
∫ r2

r1

∫ ρ0

0
In(|υ||y′0|) sin(υ

√
ρ2

0 − y′0
2)dy′0dρ0

(7.53)

Note that Cm(υ) = 0 for all odd n and Cm(υ) is an odd function of υ.

7.5 Coil Impedance Change and Experiment

Consider the internal surface S1 of the tube enclosing the eddy-current probe source whose

current density is J1 and which generates electric field E
(0)
1 . Another field E

(Γ)
1 in this region

arises from the induced current in the tube, which is outside the region. Corresponding magnetic

fields are H
(0)
1 and H

(Γ)
1 . According to the Lorentz reciprocity theorem the volume integral of

E
(Γ)
1 · J1 can be expressed as a surface integral[89] and according to the reaction principle, the

negative of the reaction equates to the power delivered to the source due to the presence of

induced current. Thus

I2∆Z =−
∫

Ω
E

(Γ)
1 · J1 dv =−

∮
S0

[E
(0)
1 ×H

(Γ)
1 −E

(Γ)
1 ×H

(0)
1 ] · dS (7.54)

where ∆Z is the coil impedance due to the presence of the induced current and one takes

S1 to be an infinite circular cylinder inside the tube at its surface whose radius is a. In terms

of transverse electric potentials,

I2∆Z = −ıωµ0a

π∫
−π

∞∫
−∞

∂ψ
(Γ)
1

∂z

(
∂2ψ

(0)
1

∂z∂ρ

)
− ∂ψ

(0)
1

∂z

(
∂2ψ

(Γ)
1

∂z∂ρ

)
dϕdz (7.55)
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where ψ
(0)
1 is the TE potential without the presence of tube and ψ

(Γ)
1 is the TE potential due

to the presence of tube. By a transformation developed from Paseval’s relation

∆Z =
iωµ0

4π2

∑
m

∞∫
−∞

υ2C−m(−υ)Γm(υ)Cm(υ) dυ (7.56)

where Γm(υ) represents the refection at the internal surface of the tube [104].

7.5.1 Model Predicted Results
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Figure 7.8: The effect of tilted angle φ on normalized resistance changes for a circular coil with

different φ inside a tube
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Figure 7.9: The effect of tilted angle φ on normalized reactance changes for a circular coil inside

a tube
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Figure 7.10: The effect of tilted angle θ on normalized resistance changes for a circular coil

with different θ inside a tube
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Figure 7.11: The effect of tilted angle θ on normalized reactance changes for a circular coil with

different θ inside a tube

The impedance changes have been calculated based on the proposed model shown from

Fig. 7.8 to Fig. 7.11 for a coil in an inconel 600 tube (µr = 1) of conductivity 0.84 MS/m. The

coil and tube parameters are given in the Table 7.1 except that the liftoff is increased by the

amount 3.918 mm to make sure it will not intersect with tube with biggest tilt angle θ = 90◦

or φ = 90◦. But it will make the impedance variation smaller compared with rotary coil case

wit φ = θ = 0◦ due to larger liftoff.
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The azimuthal tilt effect on impedance variations are shown in Fig. 7.8 and Fig. 7.9. All the

impedance data is normalized by isolated coil reactance, X0 = ωL0. We can find φ = 0◦ case

has the strongest impedance changes and azimuthal tilt will reduce the coil impedance changes

compared with rotary coil (φ = 0◦). But the changes are not significant because the distance

of the coil from the tube inner surface doesn’t change a lot φ, especially for larger liftoff and

small coil. The polar tilt effect on impedance variations are shown in Fig. 7.10 and Fig. 7.11.

We can easily find polar tilt will increase the impedance changes and θ = 90◦ (now it reduces

to offset bobbin case) has biggest reaction. One reason is the probe coil is not close to the tube

inside surface to avoid the probe intersect with tube for big tilt angle case. So bigger polar tilt

angle will make the coil closer to the tube surface and has stronger reaction.
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Figure 7.12: Comparison between coaxial bobbin coil and polar tilt coil with θ = 90◦ and

x1 = 0 of normalized resistance changes for a coil inside a tube of different frequency
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Table 7.1: Coil and inconel steam generator tube parameters for experiment

Coil Inner Raids, r1 1.529 ± 0.004mm

Coil Outer Raids, r2 3.918±0.003mm

Coil Thickness 1.044±0.005mm

Number of Turns 305

Isolated DC Coil Inductance, L0 465µH

Tube Inner Diameter 16.64±0.025mm

Tube Outer Diameter 18.99±0.025mm

Conductivity (MS/m) 0.84

Relative Magnetic Permeability, µr 1

Coil Center Liftoff, λ 1.757mm
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Figure 7.13: Comparison between coaxial bobbin coil and polar tilt coil with θ = 90◦ and

x1 = 0 of normalized reactance changes for a coil inside a tube of different frequency

In order to verify the polar tilt result, we also calculate the impedance changes of co-axial

bobbin coil inside the tube [9], which can be used to compare with the polar tilt coil by setting

θ = 90◦ and x1 = 0. The compassion are shown in Fig (7.12) and Fig (7.13). Both of them

agree with each other perfectly.

The magnitude of electrical field distribution at the tube inner interface has been calculated

in order to observe the tilt effect shown in Fig. 7.14 in terms of distance in z direction and

angles (Φ) in the circumferential direction at frequency 10kHz. The eddy-current coil and

tube parameters are summarized in Tab (7.2). Once obtaining the electrical field distribution,
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the magnitude of current distribution can be easily evaluated by multiplying the conductivity

of tube material. From the Fig. 7.14, one can find both polar tilt and azimuthal tilt will

concentrate more current in the area where is closer to the coil. However, the tilt in azimuthal

direction will increase the maximum current density magnitude more effective than polar tilt.

The reason could be that the electrical field generated by the coil is more tangential at the

central area in circumferential direction.
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(d) Coil with tilted angle φ = 45◦, θ = 45◦

Figure 7.14: The |E| distribution at the tube inner interface. a is the tube inner radius. The

induced current can be obtained by multiplying conductivity of the conductor.
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Table 7.2: Coil and inconel steam generator tube parameters for theoretical calculation

Coil Inner Raids, r1 1.529 ± 0.004mm

Coil Outer Raids, r2 3.918 ± 0.003mm

Coil Thickness 1.044 ± 0.005mm

Number of Turns 305

Isolated DC Coil Inductance, L0 465µH

Tube Inner Diameter 16.64 ± 0.025mm

Tube Outer Diameter 18.99 ± 0.025mm

Conductivity (MS/m) 0.84

Relative Magnetic Permeability, µr 1

Coil Center Liftoff, λ 5.675mm

7.5.2 Experimental Results

The experiment of a coil with axis orthogonal tilted (θ = 0◦, φ = 0◦) have been carried out in

order to acquire coil impedance variation due to the tube. The tube is inconel steam generator

tube. The coil and tube parameters are given in the Table 7.1. Although the conductivity

of the tube could be done by using an eddy current conductivity meter, the instruments are

inaccurate for samples that are not flat. instead we use the multi-frequency impedance data

provided here to determine both effective lift-off and effective tube conductivity. The impedance

variation comparison of the experimental ∆Z and theoretical calculations are shown in Fig. 7.15

and Fig. 7.16. Following the usual practice in eddy-current NDE, all the impedance data is

normalized by isolated coil reactance, X0 = ωL0. In order to get enough accuracy, we take 41

terms of m, 20 terms of n. From the comparison, we can find that the theoretical ∆Z due to

coil are in excellent agreement with the experimental results.
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Figure 7.15: Comparison between experimental and theoretical result of normalized resistance

changes for a coil inside a tube of different frequency

10
0

10
1

10
2

−0.2

−0.15

−0.1

−0.05

0

Frequency (kHz)

∆ 
X

/X
0

 

 

Experiment

Theory

Figure 7.16: Comparison between experimental and theoretical result of normalized reactance

changes for a coil inside a tube of different frequency

7.5.3 Conclusion

This paper proposes a new analytical model for obtaining the electromagnetic field of circu-

lar coil with arbitrary orientation inside or outside a tube. The source coefficients are obtained

first based on coordinate transform. Then the field and impedance changes due to tube can
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be determined. The field calculated could be used as the incident field in the integral equation

for the numerical calculation. Besides, the effects of azimuthal and polar tilt on impedance

variation have been analyzed separately. The calculated rotary coil impedance variations are

compared with the experimental results and good agreement is achieved. The co-axial bobbin

coil model inside tube is also calculated for better comparison. This theory can serve as a model

for determining the probe position and orientation with respect to a tube based on impedance

variations.
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CHAPTER 8. ARBITRARY ORIENTATION INDUCTION COIL

INTERACTING WITH PLANAR STRUCTURES

(A draft journal paper)

8.1 Abstract

In this article, simple closed-form analytical expressions for the electromagnetic field of a

circular eddy-current probe coil with arbitrary orientation above a conductive half-space or slab

are derived. The electromagnetic fields are evaluated first for a arbitrary titled circular filament

loop in the free space by using addition theorem and coordinator transform. Then the field of

a circular eddy-current coil is obtained by integrating the filament field over the cross section

of coil. The eddy current induced in the conductive half-space is calculated and analyzed in

terms of different titled angles. The impedance changes are also evaluated analytically and are

verified by comparing with the Dodd’s model whose coil axis is perpendicular with the planar

surface. The model are expected to be useful for eddy-current signal noise analysis and rapid

incident field calculation in the numerical methods models.

8.2 Introduction

The analysis of coil fields and the impedance change of a circular air-cored coil whose axis

is perpendicular to the surface of a layered conducting half-space have been studied by Dodd

and Deeds [9], which served as the basis for many eddy current non-destructive evaluation

(NDE) models [29, 79]. In addition, the coil with its axis parallel to the planar surface aimed

to model the coil used in the electrical current perturbation method for crack detection was

developed by Burke [31]. However, in the practical applications, the geometric effect produced
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by uncontrolled relative liftoff shift and coil tilt could induce highly undesirable signal added

as noise to the useful flaw signals and the simple coil models fail to capture these effects. Later,

the field distribution due to a circular current loop with arbitrary position above plate was

studied [116]. In order to make the model more general, an analytical expression of fields and

impedance change for an coil with arbitrary orientation was derived [34]. But all the expressions

require evaluation of a double infinite integral expansion, which is not computation-friendly.

In this paper, an alternative method for the problem of a circular coil with arbitrary position

and orientation is proposed. The problem is first transferred to a single layer problem by

using scalar decomposition of field and applying specific boundary conditions on the scalar

potential [111]. Then the remarkably simple closed-form expressions of field and impedance

change for a circular coil due to presence of half-space or slab are provided in terms of coil

position and tilt angle. The induced eddy current in the conductive half-space of different

tilted angle is evaluated and presented. Meanwhile, the comparison of the impedance change

between proposed model and Dodd’s model is also done and shows excellent agreement. All the

expressions only require one integral and one summation rather than double infinite integral,

which will be better for rapid calculation and numerical implementation.

z

θ

Figure 8.1: An air-cored circular coil located above conductive plate. The coil axis (dash line)

has a polar tilted angle θ relative to z axis

The theoretical results are useful in wobble noise analysis [32] and the numerical method

for fast evaluation of incident field term of volume integral method, which is widely used in

the simulation of the probe-flaw problem [117]. In addition, one can potentially extend this
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solution to include the effect of a ferrite core [49].

8.3 Circular Filament Field and Source Function Evaluation

8.3.1 Scalar Decomposition of the Fields

A quasi-static time-harmonic field varying as the real part of e−iωt can be represented by

the transverse electric (TE) potential ψ1 and transverse magnetic (TM) potential ψ2. Both are

defined with respect to the unit vector ẑ, which is the direction of the global coordinate axis.

In the source-free region, we can express the magnetic field intensity as

H = ∇×∇× ẑψ1 + k2∇× ẑψ2 (8.1)

and electric field intensity as

E = iωµ [∇× ẑψ1 +∇×∇× ẑψ2] (8.2)

where k2 = iωµ0µrσ, µ0 is free space permeability, µr is relative permeability of the material

and σ is the electric conductivity of the material. For a conductive region both potentials

satisfy the Helmholtz equation. However, for non-conductive regions, both scalar potentials

satisfy the Laplace equation due to k2 = 0, in which case (8.1) reduces to

H = ∇∂ψ1

∂z
. (8.3)

Note that now the magnetic field is only determined by TE potential ψ1.

8.3.2 Field of a Tilted Circular Filament Loop

A circular filament loop with arbitrary orientation and radius ρ0 excited by AC current I

can be modeled as Fig. 8.2. (x, y, z) is the global coordinate system and (x0, y0, z0) is the local

coordinate system whose origin is at point P with global coordinates as (xc, 0, zc). Relative to

the global z axis, the local z0 axis can be located by rotating the z0 axis through a polar angle

θ relative to the line VP which is parallel to the global z axis.
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Figure 8.2: Circular filament centered at the point Q in the plane z0 = z′0 having radius ρ0.

The axis of the circular loop coincides with z0 axis

O
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θ

0

x0

z

d

Q
X

P

V

R

Figure 8.3: A circular filament loop with titled angle θ in the free-space. The cross-section

view shows the y = 0 plane.

The filament lies in the plane z0 = z′0 centered at point Q on z0 axis, where z′0 is a constant

for a given filament. Later we treat it as a variable to determine the coil field based on filament

field. The angle θ is the tilted angle of filament and d is the smallest distance from any point of

the filament loop to the xy− plane, Fig. 8.3. The transformation between the global coordinate

system and the local coordinate system is obtained as

x = x0 cos θ + z0 sin θ + xc (8.4)

y = y0 (8.5)

z = −x0 sin θ + z0 cos θ + zc (8.6)
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Instead of obtaining ψ1 directly, we first use the TE potential ψ0 defined with preferred

direction in z0, Fig. 8.3, to represent the field. Similarly, the potential ψ0 also satisfies Laplace

equation

H = ∇∂ψ0

∂z0
. (8.7)

Once ψ0 is solved, ψ1 is easily recovered by the relationship

∂ψ1

∂z
=
∂ψ0

∂z0
(8.8)

To ensure the continuity of tangential electric field, ψ0 is continuous on S0. To satisfy the

circuital law, the following discontinuity on S0 is introduced [111][
∂ψ0

∂z0

]
S0

= −I (8.9)

and it’s a single layer potential.

Since ψ0 satisfies the Laplace equation, it can be expressed in cylindrical coordinates fol-

lowing the method of separation of variables in the general form as

ψ0(ρ, φ, z) =
I

4π

∞∑
m=−∞

eimφ
∞∫

0

Dm(κ)Jm(κρ)
e−κz

eκz
dκ,

z > zmax

z < zmin

(8.10)

where Dm(κ) is the source function of a circular filament loop and is to be determined. The

limit zmax, which is the the largest coordinate value of a point on the filament in z axis, is

lower limit of e−κz solution. Similarly, the limit zmin, which is the smallest coordinate value of

a point on the filament in the z axis, is the upper limit of eκz solution. We shall not need he

filed of region zmin < z < zmax.

By using Green’s second theorem for a single layer potential ψ0, we have

ψ0 =
I

4π

∫
S0

1

R
dS′ (8.11)

where the integration is over the surface S0 bounded by the filament in terms of source coor-

dinates. Since of R = |r− r′| and r′ denotes the source coordinate, we have

∂ψ1

∂z
= −∂ψ0

∂z′0
(8.12)
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Given that we can express 1/R using addition theorem as [95]

1

R
=

∞∑
m=−∞

eim(φ−ϕ′)
∞∫

0

Jm(κρ)Jm(κρ′)e−κ|z−z
′|dκ (8.13)

By substituting (8.13) into (8.11) and comparing with (8.10), the source coefficient Dm(κ) is

obtained as

Dm(κ) =

∫
S0

e−imϕ
′
Jm(κρ′)

eκz
′

e−κz
′
dS′,

z > zmax

z < zmin

(8.14)

where Dm(κ) is the source function which will be evaluated using Graf’s addition theorem and

the coordinate transformation as shown in (8.4), (8.5) and (8.6).

E
F

D

φ

α

βs

θ

Figure 8.4: The triangle DEF used to relate addition theorem variables

8.3.3 Source Coefficient Evaluation

In order to evaluate (8.14), the following addition theorem based on triangle DEF, Fig. 8.4,

is used. [115]

Jv(s)e
−ivϕ =

n=∞∑
n=−∞

Jv+n(α)Jn(β)e−inθ (8.15)

Here the addition theorem is used with reference to ∆RTS, Fig. 8.5 and ∆RUT, Fig. 8.6. By

applying the addition theorem to both triangles, we let s = κρ′, α = κX and β = κ|y′0| for

φ′ > 0 to obtain

Jm(κρ′)e−imϕ
′

=
∞∑

n=−∞
Jm+n(κX)Jn(κy′0)e−inπ/2 (8.16)

and for φ′ < 0

Jm(κρ′)e−imϕ
′

=

∞∑
n=−∞

Jm+n(κX)Jn(κ|y′0|)einπ/2 (8.17)

where X = x′0 cos θ + z′0 sin θ + xc is the shortest distance from any point on the surface S0

bounded by filament to the z axis.
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Figure 8.5: Circular filament centered at point Q. the filament surface S0 intersects with y = 0

plane at the line AB, which split the S0 into two parts. The triangles ∆RTS shows how Graf’s

addition theorem is applied on it
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S

Figure 8.6: The plane view of a tilted circular filament loop. The triangles ∆RTS and ∆RTU

are used to transform the global source coordinates to local coordinates by Graf’s addition

theorem

The integration limits are determined by the filament itself. For both φ′ > 0 and φ′ < 0,

the low limit of the integration with respect to z′0 is −a(y′0) where a(y′0) =
√
ρ2

0 − y′0
2, taking

the positive root. The upper limit is a. By substituting (8.16) and (8.17) into (8.14) and the

integration limits discussed above, we have



www.manaraa.com

154

Dm(κ) = 2

∞∑
n=−∞

cos
(nπ

2

) ρ0∫
0

Jn(κy′)

a∫
−a

Jm+n(κX)
eκz
′

e−κz
′
dx′0dy

′
0,

z > zmax

z < zmin

(8.18)

where z′ = −x′0 sin θ + z′0 cos θ + zc

8.4 Coil Field Analysis

8.4.1 Coil Field in the Free-space

Similarly to the TE potential of a circular filament current loop, the TE potential of circular

the eddy-current coil can also be expressed in the form

ψ1,c(ρ, φ, z) =
I

4π

∞∑
m=−∞

eimφ
∞∫

0

Cm(κ)Jm(κρ)
e−κz

eκz
dκ,

z > zmax

z < zmin

(8.19)

where Cm(κ) is the coil source coefficient which is need to be determined.

By using (8.12), we have

Cm(κ)
−κ

κ
= −v

r2∫
r1

[
Dm(ρ0, z

′
0 = l/2, κ)−Dm(ρ0, z

′
0 = −l/2, κ)

]
dρ0,

z > zmax

z < zmin

(8.20)

where v = N/l(r2 − r1) is the turn density, which is only determined by coil parameters, Fig.

8.7.

O

x

z

θ

0

x0

z

P

V

r
2r

1

l

Figure 8.7: The cross-section view of a tilted circular coil is shown in dashed outline. The coil

is centered at point P and one filament loop of the coil is also shown to illustrate the filament

superposition
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8.4.2 Induced Eddy Current in the Conductive Half-space
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(a) Amplitude Contour of eddy currents with titled

angle θ = 0◦
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(b) Amplitude Contour of eddy currents with ti-

tled angle θ = 30◦
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(c) Amplitude Contour of eddy currents with titled

angle θ = 60◦
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(d) Amplitude Contour of eddy currents with titled

angle θ = 90◦

Figure 8.8: Amplitude Contour of eddy currents induced on the surface of a conductive half-

space by a circular coil with different titled angle

Assuming a air-cored circular coil is located above a conductive half-space with conductiv-

ity σ and relative permeability µr, the induced eddy current in the conductive half-space is
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expressed by applying (8.2) and J = σE as

Jρ = iωµσ
I

4π

∞∑
m=−∞

eimφ
∞∫

0

imCm(κ)Tte(κ)
1

ρ
Jm(κρ)eγzdκ (8.21)

Jφ = −iωµσ I

4π

∞∑
m=−∞

eimφ
∞∫

0

Cm(κ)Tte(κ)J ′m(κρ)eγzdκ (8.22)

where Tte(κ) is the transmission coefficient. For half-space it has the form

Tte(κ) =
2κ

κµr2 + γ2
(8.23)

In order to have a better understanding of the effect of tilt, the induced eddy current with

different tilted angle is evaluated and shown in Fig. 8.8. The coil size and specimen parameters

are summarized in Tab. 8.1.

Table 8.1: Coil and specimen parameters

Coil Inner Radius, r1 1.529mm

Coil Outer Radius, r2 3.918mm

Coil Thickness, l 1.044mm

Number of Turns, N 305

Isolated DC Coil Inductance, L0 465µH

Conductivity (MS/m) 20.0

Relative Magnetic Permeability, µr 1

Coil Center Liftoff, zc 4.522mm

8.5 Impedance Variation

S0 is the arbitrary surface which includes the scatter here its the conductor.

I2∆Z = iωµ

2π∫
0

∞∫
0

[
∂ψr1
∂z

∂2ψ0
1

∂z2
− ∂ψ0

1

∂z

∂2ψr1
∂z2

]
ρdφdρ (8.24)

Then the impedance change is expressed as

∆Z =
−iωµ

4π

∞∑
m=−∞

(−1)m
∞∫

0

κ2C−m(κ)Γte(κ)Cm(κ)dκ (8.25)
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where Γte(κ) is the reflection coefficient. For half-space it has the form

Γte(κ) =
κµr2 − γ2

κµr2 + γ2
(8.26)

If the tilted angle is zero, the problem reduces to model proposed by Dodd [9] and the impedance

variance can be evaluated by the following equation.

∆Z = −iπωµ0v
2

∞∫
0

χ2(κr1, κr2)

κ6
(e−kz1 − e−kz2)

2
Γte(κ)dκ (8.27)

where z1 = zc − l/2, z2 = zc + l/2,

χ(κr1, κr2) = χ(κr2)− χ(κr1) (8.28)

and

χ(α) =

α∫
0

J1(x)xdx =
πα

2
[J1(α)H0(α)− J0(α)H1(α)] (8.29)

H0(α) and H1(α) are Struve functions [102].

The impedance variation based on the our formulation and horizontal coil formulation are

obtained individually. The coil size and specimen parameters are shown in Tab. 7.1 except the

coil center liftoff, zc, is set as 1.522mm. The comparison is shown as follow.
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Figure 8.9: The comparison of resistance variation between tilted coil with titled angle θ = 0◦

and horizontal coil formulation due to the existence of half-space conductor
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Figure 8.10: The comparison of reactance variation between tilted coil with titled angle θ = 0◦

and horizontal coil formulation due to the existence of half-space conductor

8.6 Conclusion

This paper proposes a new analytical model for obtaining the electromagnetic field of cir-

cular coil with arbitrary orientation above a conductive half-space. This analytical solution

can be used in the wobble noise analysis and repaid calculation of incident field involved in the

MoM calculation.
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APPENDIX A. REFLECTION AND TRANSMISSION COEFFICIENT

FOR PLANARLY AND CYLINDRICALLY LAYERED MEDIUM

A.1 Reflection and Transmission in a Cartesian Coordinate System

A.1.1 Half Space Coefficients

Region 1

Region 2

µ1,σ1

µ2,σ2

Figure A.1: Half-space medium with source in region 1

In the source free region, the fields can be expressed in terms of TE scalar potential ψ1 and

TM scalar potential ψ2.

H = ∇×∇× (ẑψ1) + k2∇× (ẑψ2) (A.1)

E = iωµ[∇× (ẑψ1) +∇×∇× (ẑψ2)] (A.2)

where µ is the permeability of medium.

In the Cartesian coordinate system, we have

H = x̂

(
∂2ψ1

∂x∂z
+ k2∂ψ2

∂y

)
+ ŷ

(
∂2ψ1

∂y∂z
− k2∂ψ2

∂x

)
− ẑ∇2

tψ1 (A.3)

E = x̂iωµ

(
∂ψ1

∂y
+
∂2ψ2

∂x∂z

)
+ ŷiωµ

(
−∂ψ1

∂x
+
∂2ψ2

∂y∂z

)
− ẑiωµ∇2

tψ2 (A.4)
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Assuming both of potentials have the forms

ψ = A1[eγ1z +R12e
−γ1z] (A.5)

for region 1, and

ψ = A1[T12e
γ2z] (A.6)

for region 2 separately. R12 indicates the reflection coefficient for the field comes from region 1

and is reflected back to region 1. T12 indicates the reflection coefficient for the field transmitting

from region 1 to region 2.

The reflection and transmission coefficients can be obtained by applying boundary condi-

tions that the tangential components of E and H fields should be continuous at the interface.

The continuity of E field introduces

[µiψ1] |z=zc = 0,

[
µi
∂ψ2

∂z

]
|z=zc = 0 (A.7)

and that the continuity of H indicates[
∂ψ1

∂z

]
|z=zc = 0, [µiσiψ2] |z=zc = 0 (A.8)

where subscript i indicates the region. In the end, we have the reflection and transmission

coefficients for TE potential as

Rte,12(κ) =
γ1/γ2 − µ1/µ2

γ1/γ2 + µ1/µ2
=
γ1µ2 − γ2µ1

γ1µ2 + γ2µ1
(A.9)

Tte,12(κ) =
2 (γ1/γ2)× (µ1/µ2)

γ1/γ2 + µ1/µ2
=

2γ1µ1

γ1µ2 + γ2µ1
=
µ1

µ2
[1 +Rte,12(κ)] (A.10)

Similarly to TM potential, we have

Rtm,12(κ) =
σ2γ1 − σ1γ2

σ2γ1 + σ1γ2
(A.11)

Ttm,12(κ) =
σ1

σ2
[1 +Rtm,12(κ)] =

2σ1γ1

σ2γ1 + σ1γ2
(A.12)
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A.1.2 Slab with a Source Above It

Region 1

Region 2

µ1,σ1

µ2,σ2

Region 3 µ3,σ3

z=-d1

z=-d2

Figure A.2: Infinite large slab with source in region 1

The general potential expressions for three different regions, namely region 1,2 and 3, can

be written with undetermined coefficients firstly as follow individually[90].

ψ = A1[eγ1z +Rg12e
−2γ1d1e−γ1z]

ψ = A2[eγ2z +R23e
−2γ2d2e−γ2z]

ψ = A3e
γ3z

(A.13)

where A1,A2 and A3 are the undermined coefficient for corresponding region. The subscript

indicates different region, Fig.A.2. Rg12 represents the total reflection coefficient, indicated by

superscript g, not only due to the z = −d1 interface.

Since the downward field in region 2 is the sum of the transmitted field from region 1 and

the reflected field from the interface at z = −d1, we have

A2e
−γ2d1 = T12A1e

−γ1d1 +R21A2R23e
−2γ2d2+γ2d1 (A.14)

Similarly, since the upward field in region 1 is the sum of the transmitted field from region

2 and the reflected field from the interface at z = −d1, we obtain

Rg12A1e
−γ1d1 = R12A1e

−γ1d1 + T21A2R23e
−2γ2d2+γ2d1 (A.15)
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Now we can obtain

A2 =
T12e

(γ2−γ1)d1

1−R21R23e−2γ2(d2−d1)
A1 (A.16)

Rg12 = R12 +
T21T12R23e

−2γ2(d2−d1)

1−R21R23e−2γ2(d2−d1)
(A.17)

which is similar to the reflection coefficient Γin in terms of S-parameters used in the RF circuit.

Γin = S11 +
S12S21Γload
1− S22Γload

(A.18)

If we add one more layer, we just need to replace the R23 by the general reflection coefficient

Rg23 as

Rg12 = R12 +
T12R

g
23T21e

−2γ2(d2−d1)

1−R21R
g
23e
−2γ2(d2−d1)

(A.19)

Now we have the potential in region 2 as

ψ = A1
T12e

(γ2−γ1)d1

1−R21R23e−2γ2(d2−d1)
[eγ2z +R23e

−2γ2d2e−γ2z] (A.20)

At the interface z = −d2, we have the following constrain

A3e
−γ3d2 = T23A2e

−γ2d2 (A.21)

Then coefficient A3 can be represented in terms of A1. The potential in region 3 can reduce to

ψ = A1
T12e

(γ2−γ1)d1

1−R21R23e−2γ2(d2−d1)
T23e

(γ3−γ2)d2eγ3z (A.22)

Note that all the formulation are valid for both TE potential, ψ1, and TM potential, ψ2,

by just substituting the corresponding R and T coefficients.
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A.1.3 Slab with an Internal Source

Region 1

Region 2

µ1,σ1

µ2,σ2

Region 3 µ3,σ3

z=-d1

z=-d2

z=z’

Figure A.3: Slab with Embedded Source in Region 2

The z variation of the potentials in the region 2, Fig. A.3, can be expressed as the sum of

three components, namely the first one in the unbounded domain, the second one reflected by

the up interface at z = −d1 and the third one reflected by the down interface at z = −d2.

ψ̃(z, z′) = e−γ2|z−z
′| +Beγ2z +De−γ2z (A.23)

with the undetermined coefficients B and D, which could be solved by applying constraint

conditions at the interfaces.

Since the downward field at z = −d1 should be the sum of the reflected field due to

unbounded upward one and that due to reflection at z = −d2, we have

Be−γ2d1 = R21[e−γ2|d1+z′| +Deγ2d1 ] (A.24)

Rij denotes the reflection coefficient for the field coming from region i to region j and is reflected

back to region i.

Similarly, the upward field at z = −d2 should be the sum of the reflected field due to

unbounded downward one and that due to reflection at z = −d1. So we have

Deγ2d2 = R23[e−γ2|d2+z′| +Be−γ2d2 ] (A.25)
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By solving the above two equations, we obtain

Be−γ2d1 = R21
e−γ2|d1+z′| +R23e

−γ2|d2+z′|eγ2(d1−d2)

1−R21R23e2γ2(d1−d2)
(A.26)

Deγ2d2 = R23
e−γ2|d2+z′| +R21e

−γ2|d1+z′|eγ2(d1−d2)

1−R21R23e2γ2(d1−d2)
(A.27)

By substituting Eq. A.27 back into Eq. A.23, we have

ψ̃+(z, z′) = [eγ2z
′
+ e−γ2(2d2+z′)R23][e−γ2z + eγ2(2d1+z)R21]M−1 (A.28)

ψ̃−(z, z′) = [e−γ2z
′
+ eγ2(2d1+z′)R21][eγ2z + e−γ2(2d2+z)R23]M−1 (A.29)

where M = 1 − R21R23e
2γ2(d1−d2), ψ̃+(z, z′) denotes the variation in the region blow z = −d1

and above the source z = z′ and ψ̃−(z, z′) denotes the variation in the region blow z = z′ and

above the source z = −d2.

The regular term or reflection term can be expressed as

ψ̃Γ(z, z′) =

 R21e
γ2(2d1+z′)eγ2z +R21R23e

−γ2(d2+z′)eγ2(2d1−d2)eγ2z

+R23e
−γ2(2d2+z′)e−γ2z +R23R21e

γ2(d1+z′)eγ2(d1−2d2)e−γ2z

M−1 (A.30)

For slab in the air, we have R21 = R23 = R. And we assume d1 = 0. Now the M reduce to

M = 1−R2e−2γ2d2 (A.31)

ψ̃Γ
(
z, z′

)
= R

eγ2(z′+z) +Re−2γ2d2eγ2(z−z′) + e−2γ2d2e−γ2(z+z′) +Re−2γ2d2e−γ2(z−z′)

1−R2e−2γ2d2
(A.32)

A.2 Reflection and Transmission in a Cylindrical Coordinate System

In the source free region, the fields can be expressed in terms of TE scalar potential, ψ1,

and TM scalar potential, ψ2, as

H = ∇×∇× (ẑψ1) + k2∇× (ẑψ2) (A.33)

E = iωµ[∇× (ẑψ1) +∇×∇× (ẑψ2)] (A.34)

where µ is the permeability of medium.
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The explicit expressions are

H =ρ̂

(
∂2ψ1

∂z∂ρ
+ k2 1

ρ

∂ψ2

∂φ

)
+ φ̂

(
1

ρ

∂2ψ1

∂z∂φ
− k2∂ψ2

∂ρ

)
− ẑ 1

ρ

(
∂

∂ρ
(ρ
∂ψ1

∂ρ
) +

1

ρ

∂2ψ1

∂φ2

) (A.35)

E = ρ̂iωµ

(
1

ρ

∂ψ1

∂φ
+
∂2ψ2

∂z∂ρ

)
+ φ̂iωµ

(
−∂ψ1

∂ρ
+

1

ρ

∂2ψ2

∂z∂φ

)
− ẑiωµ1

ρ

(
∂

∂ρ
(ρ
∂ψ2

∂ρ
) +

1

ρ

∂2ψ2

∂φ2

) (A.36)

Hz = −∇2
tψ1 =

∂2ψ1

∂z2
+ k2ψ1 (A.37)

Ez = −iωµ∇2
tψ2 = iωµ

(
∂2ψ2

∂z2
+ k2ψ2

)
(A.38)

Note that

∇2
t =

1

ρ

(
∂

∂ρ
(ρ
∂

∂ρ
) +

1

ρ

∂2

∂φ2

)
(A.39)

By using Fourier transform, we can express the potentials in the following spectral form

ψ1 =
∞∑

m=−∞
eimϕ

∫ ∞
−∞

eiκzψ̃1,ρdκ =
∞∑

m=−∞
eimφψ̃1 (A.40)

ψ2 =
∞∑

m=−∞
eimϕ

∫ ∞
−∞

eiκzψ̃2,ρdκ =
∞∑

m=−∞
eimφψ̃2 (A.41)

where

ψ̃1(ρ,m, z) =

∫ ∞
−∞

eiκzψ̃1,ρdκ (A.42)

ψ̃2(ρ,m, z) =

∫ ∞
−∞

eiκzψ̃2,ρdκ, (A.43)

and ψ̃1,ρ and ψ̃2,ρ satisfies the Bessel equation

ψ̃ρ + ψ̃ρ
1

ρ
− (γ2 +

m2

ρ2
)ψ̃ρ = 0 (A.44)

where γ =
√
κ2 − k2. The general solution of it is

ψ̃ρ = AmIm(γρ) +BmKm(γρ) (A.45)

Then we can express the spectral domain potentials ψ̃1,ρ and ψ̃2,ρ in the matrix form, ψ̃1,ρ

ψ̃2,ρ

 = Im(γρ)

 ate,m

atm,m

 = Im(γρ)am (A.46)
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for the incoming field, and ψ̃1,ρ

ψ̃2,ρ

 = Km(γρ)

 ate,m

atm,m

 = Km(γρ)am (A.47)

for the outgoing field. Here am =

 ate,m

atm,m

 is the source coefficients determined by the source.

A.2.1 Borehole with an Internal Source

A borehole structure with source in the borehole is shown in Fig. A.4. In order to make

the region clear, from the inner to outside, the index will increase and start at 1. Hence the

source here is in region 1.

Region 1 Region 2

µ1,σ1 µ2,σ2

a

Figure A.4: Borehole structure with the source in region 1. The radius of hole is a

In the region 1, we express the TE and TM potentials generally as ψ̃1,ρ

ψ̃2,ρ


1

=

[
Km(γ1ρ)

Km(γ1a)
I +

Im(γ1ρ)

Im(γ1a)
Γ12

]
a1m

=

[
Km(γ1ρ)I + Im(γ1ρ)

Km(γ1a)

Im(γ1a)
Γ12

]
a1m

Km(γ1a)

(A.48)
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where a1m is the source coefficient, Γg12 = Km(γ1a)
Im(γ1a) Γ12 is the non-normalized reflection coefficient

from region 1 to region 2. The diagonal components of Γg12 denote the self-interaction reflection.

And the other two components denote the coupling between TE and TM modes. In region 2,

we have  ψ̃1,ρ

ψ̃2,ρ


2

=

[
Km(γ2ρ)

Km(γ2a)
T12

]
a1m =

[
Km(γ2ρ)

Km(γ1a)

Km(γ2a)
T12

]
a1m

Km(γ1a)
(A.49)

Tg
12 = Km(γ1a)

Km(γ2a)T12 is the non-normalized transmission coefficient. The diagonal components of

Km(γ1a)
Km(γ2a)T12 denote the self-interaction transmission coefficient. And the other two denote the

coupling between TE and TM modes.

In order to get the reflection and transmission coefficients, we need to apply the continuous

BCs at the borehole interface. We can express the electric and magnetic field in the spectral

form as

H̃ρ =
∂2ψ̃1

∂z∂ρ
+ imk2 ψ̃2

ρ
(A.50)

Ẽρ = iωµ

(
im

ρ
ψ̃1 +

∂2

∂z∂ρ
ψ̃2

)
(A.51)

H̃φ =
im

ρ

∂ψ̃1

∂z
− k2∂ψ̃2

∂ρ
(A.52)

Ẽφ = −iωµ

(
∂ψ̃1

∂ρ
− im

ρ

∂ψ̃2

∂z

)
(A.53)

H̃z =
∂2ψ̃1

∂z2
+ k2ψ̃1 (A.54)

Ẽz = iωµ

(
∂2ψ̃2

∂z2
+ k2ψ̃2

)
(A.55)

Then we have the z-components as follow in the matrix form H̃z

Ẽz/iω

 = −γs2µs

 ψ̃1,ρ

ψ̃2,ρ

 (A.56)

where s is the region index, γs =
√
κ2 − ks2, ks

2 = iωµ0µr,sσs, and µs =

 1 0

0 µ0µr,s

 =

 1 0

0 µs

 is the µ matrix for region s.
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Similarly, we have the φ-components as follow in the matrix form H̃φ

Ẽφ/iω

 = µs

 im
ρ ∂z −ks

2∂ρ

−∂ρ im
ρ ∂z


 ψ̃1

ψ̃2

 = −µs

 mκ
ρ ks

2∂ρ

∂ρ
mκ
ρ


 ψ̃1,ρ

ψ̃2,ρ

 (A.57)

By using continuous boundary condition that the tangential component in region 1 and

region 2 should be continuous at the interface, we can easily obtain at the interface ρ = a

γ2
1µ1

 ψ̃1,ρ

ψ̃2,ρ


1

= γ2
2µ2

 ψ̃1,ρ

ψ̃2,ρ


2

(A.58)

µ1

 mκ k2
1ρ∂ρ

ρ∂ρ mκ


 ψ̃1,ρ

ψ̃2,ρ


1

= µ2

 mκ k2
2ρ∂ρ

ρ∂ρ mκ


 ψ̃1,ρ

ψ̃2,ρ


2

(A.59)

By substituting Eq A.48 and A.49 into the above equations, we can get

γ2
1µ1[I + Γ12] = γ2

2µ2T12 (A.60)

µ1[Mm(γ1a)I + Λm(γ1a)Γ12] = µ2Mm(γ2a)T12 (A.61)

Here

Mm(γ2a) =

 mκ k2
2Mm(γ2a)

Mm(γ2a) mκ


Mm(γ1a) =

 mκ k2
1Mm(γ1a)

Mm(γ1a) mκ


Λm(γ1a) =

 mκ k2
1Λm(γ1a)

Λm(γ1a) mκ


(A.62)

Here we defining

Λm(x) =
xI ′m(x)

Im(x)
,Mm(x) =

xK ′m(x)

Km(x)
(A.63)

We can easily have

Λm(x)−Mm(x) =
x(I ′mKm − ImK ′m)

ImKm
=

1

ImKm
(A.64)

By solving the Eq. A.60 and A.61, we have

Γ12 = Q−1γ2
2µ1 [Λm(γ1a)−Mm(γ1a)]− I (A.65)
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where Q = γ2
2µ1Λm(γ1a)− γ2

1µ2Mm(γ2a)µ2
−1µ1.

We notice that

[Λm(γ1a)−Mm(γ1a)] =
1

Im(γ1a)Km(γ1a)

 0 k2
1

1 0

 (A.66)

Then Γ12 reduces to

Γ12 =
γ2

2

Im(γ1a)Km(γ1a)
Q−1

 0 k2
1

µ1 0

− I (A.67)

The transmission coefficient matrix is obtained as

T12 =
γ2

1

γ2
2

µ2
−1µ1[I + Γ12] =

γ2
1

γ2
2

 1 + Γ11 Γ12

µ1µ2
−1Γ21 µ1µ2

−1(1 + Γ22)

 (A.68)

Or

T12 = γ2
1µ2

−1µ1Q
−1µ1[Λm(γ1a)−Mm(γ1a)] (A.69)

If air is in region 1 and conductive material is in region 2, we have the reflection and

transmission coefficients of TE potential due to TE source as[104]

Γ12(1, 1) = −
m2k2

2µr2 +Mm(γ2a)
[
γ2

2Mm(|κ|a)− κ2µr2Mm(γ2a)
]

m2k2
2µr2 +Mm(γ2a)

[
γ2

2Λm(|κ|a)− κ2µr2Mm(γ2a)
] (A.70)

and

T12(1, 1) =
κ2Mm(γ2a) [Λm(|κ|a)−Mm(|κ|a)]

m2k2
2µr2 +Mm(γ2a)

[
γ2

2Λm(|κ|a)− κ2µr2Mm(γ2a)
] (A.71)

Furthermore, if it’s the coaxial bobbin coil problem, m = 0 is applied. Then we have

Γg12(1, 1) = − [κµr2K0(κa)K1(γ2a)− γ2K0(γ2a)K1(κa)]

[γ2K0(γ2a)I1(κa) + κµr2K1(γ2a)I0(κa)]
(A.72)
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A.2.2 Borehole with an External Source

Region 1 Region 2
µ1,σ1 µ2,σ2

a

Figure A.5: Borehole structure with the source in region 2. The radius of hole is a

Similarly to the derivation of borehole with the source in region 1, we expressed the spectral

domain potentials in region 1 as, ψ̃1,ρ

ψ̃2,ρ


1

= [
Im(γ1ρ)

Im(γ1a)
T21] = [Im(γ1ρ)Tg

21]
a2m

Im(γ2a)
(A.73)

Tg
21 = Im(γ2a)

Im(γ1a)T21 is the general transmission coefficient. And in region 2, we have ψ̃1,ρ

ψ̃2,ρ


2

= [
Im(γ2ρ)

Im(γ2a)
I +

Km(γ2ρ)

Km(γ2a)
Γ21]a2m

= [Im(γ2ρ)I +Km(γ2ρ)Γg21]
a2m

Im(γ2a)

(A.74)

Γg21 = Im(γ2a)
Km(γ2a)Γ21 is the general reflection coefficient.

By applying BCs at the interface ρ = a, we have

γ2
1µ1

 ψ̃1,ρ

ψ̃2,ρ


1

= γ2
2µ2

 ψ̃1,ρ

ψ̃2,ρ


2

(A.75)
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and

µ1

 mκ k2
1ρ∂ρ

ρ∂ρ mκ


 ψ̃1,ρ

ψ̃2,ρ


1

= µ2

 mκ k2
2ρ∂ρ

ρ∂ρ mκ


 ψ̃1,ρ

ψ̃2,ρ


2

(A.76)

By substituting Eq. A.73 and A.74, we obtain

γ2
1µ1[T21] = γ2

2µ2[I + Γ21] (A.77)

µ1Λm(γ1a)[T21] = µ2[Λm(γ2a)I + Mm(γ2a)Γ21] (A.78)

By solving the above two equations, we obtain

Γ21 = γ2
1Q−1µ2[Λm(γ2a)−Mm(γ2a)]− I (A.79)

where

Q = γ2
2µ1Λm(γ1a)µ−1

1 µ2 − γ2
1µ2Mm(γ2a) (A.80)

Note that

[Λm(γ2a)−Mm(γ2a)] =
1

Im(γ2a)Km(γ2a)

 0 k2
2

1 0

 (A.81)

then Eq.A.79 can be rewritten as

Γ21 =
γ2

1

Im(γ2a)Km(γ2a)
Q−1

 0 k2
2

µ2 0

− I (A.82)

The transmission coefficient matrix is solved as

T21 =
γ2

2

γ2
1

µ1
−1µ2[I + Γ21] =

γ2
2

γ2
1

 1 0

0 µ2µ1
−1

 [I + Γ21] (A.83)

Or

T21 = γ2
2µ1

−1µ2Q
−1µ2[Λm(γ2a)−Mm(γ2a)] (A.84)

Actually, In order to get the non-normalized Γ and T (the similar definition in [90]), we can

use the following relationship

• From region 1 to region 2

Γg12 =
Km(γ1a)

Im(γ1a)
Γ12 (A.85)

Tg
12 =

Km(γ1a)

Km(γ2a)
T12 (A.86)
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• From region 2 to region 1

Γg21 =
Im(γ2a)

Km(γ2a)
Γ21 (A.87)

Tg
21 =

Im(γ2a)

Im(γ1a)
T21 (A.88)

A.2.3 Tube with an Internal Source

Region 1 Region 2

µ1,σ1 µ2,σ2

Region 3

µ3,σ3

a

b

Figure A.6: Tube structure with the source in region 1

First, we express the spectral domain potentials in the general form for region 1, 2 and 3 as ψ̃1,ρ

ψ̃2,ρ


1

=

[
Km(γ1ρ)

Km(γ1a)
I +

Im(γ1ρ)

Im(γ1a)
Γ̃12

]
· a1m (A.89)

 ψ̃1,ρ

ψ̃2,ρ


2

=

[
Km(γ2ρ)

Km(γ2b)
I +

Im(γ2ρ)

Im(γ2b)
Γ23

]
· a2m (A.90)

 ψ̃1,ρ

ψ̃2,ρ


3

=

[
Km(γ3ρ)

Km(γ3b)

]
· a3m (A.91)

where Γ̃12 is the total reflection coefficient due to the effect of all the interface not only the

ρ = a interface. At interface ρ = a, we have two constraints. one is the outgoing field in region

2 is the sum of the transmitted field of the incident field in region 1 and the reflected field
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from incoming field in region 2. Another one is the incoming field in region 1 is the sum of the

transmitted field comes from incoming field in region 2 and the field reflected from outgoing

field in region 1.

Then we can get

a2m

Km(γ2b)
= Tg

12

a1m

Km(γ1a)
+ Γg21Γ23

a2m

Im(γ2b)
(A.92)

Γ̃12
a1m

Im(γ1a)
= Γg12

a1m

Km(γ1a)
+ Tg

21Γ23
a2m

Im(γ2b)
(A.93)

Or in the normalized form as

a2m

Km(γ2b)
=
Km(γ1a)

Km(γ2a)
T12

a1m

Km(γ1a)
+

Im(γ2a)

Km(γ2a)
Γ21Γ23

Km(γ2b)

Im(γ2b)

a2m

Km(γ2b)
(A.94)

Γ̃12
a1m

Im(γ1a)
=
Km(γ1a)

Im(γ1a)
Γ12

a1m

Km(γ1a)
+
Im(γ2a)

Im(γ1a)
T21Γ23

Km(γ2b)

Im(γ2b)

a2m

Km(γ2b)
(A.95)

From Eq.A.92, we have

a2m =
Km(γ2b)

Km(γ2a)

[
I− Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
Γ21 · Γ23

]−1

·T12 · a1m (A.96)

Then substituting it into Eq.A.93, we obtain

Γ̃g12 = Γg12 + Tg
21 · Γ

g
23(I− Γg21 · Γ

g
23)
−1 ·Tg

12 =
Km(γ1a)

Im(γ1a)
Γ̃12 (A.97)

in the non-normalized form and

Γ̃12 = Γ12 +
Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
T21 · Γ23

[
I− Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
Γ21 · Γ23

]−1

·T12 (A.98)

in the normalized form.

Note that here Γ̃12 is the normalized reflection coefficient. Here γ2
1 = κ2 − k2

1, γ
2
2 = κ2 −

k2
2, k

2
1 = iωµ0µr1σ1, k

2
2 = iωµ0µr2σ2

The potentials in region 2 is ψ̃1,ρ

ψ̃2,ρ


2

= [Km(γ2ρ)I + Im(γ2ρ)Γg23]
[
I− Γg21Γ

g
23

]−1
Tg

12

a1m

Km(γ1a)
(A.99)
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A.2.4 Tube with a Source between inner and outer surface

Region 1 Region 2

µ1,σ1 µ2,σ2

Region 3

µ3,σ3

a

b

Figure A.7: Tube with source in region 2

The Green’s function due to point source can be expressed as the sum of three components,

namely the first one in the unbounded domain, the second one reflected by the inner interface

and the third one reflected by the outsider interface[90]

 G̃11 G̃12

G̃21 G̃22

 = G̃ = Im(γ2ρ<)Km(γ2ρ>)I +Km(γ2ρ)Am + Im(γ2ρ)Bm (A.100)

The outward field at ρ = a should be the sum of the reflected field due to unbounded inward

one and that due to reflection at ρ = b .

Am =
Im(γ2a)

Km(γ2a)
Γ21 · [Km(γ2ρ

′)I + Bm] = Γg21 · [Km(γ2ρ
′)I + Bm] (A.101)

The inward field at ρ = b should be the sum of the reflected field due to unbounded inward one

and that due to reflection at ρ = a.

Bm =
Km(γ2b)

Im(γ2b)
Γ23 · [Im(γ2ρ

′)I + Am] = Γg23 · [Im(γ2ρ
′)I + Am] (A.102)

Then we can get

Am = M+Γg21 ·
[
Km(γ2ρ

′)I + Im(γ2ρ
′)Γg23

]
(A.103)

Bm = M−Γg23

[
Im(γ2ρ

′)I +Km(γ2ρ
′)Γg21

]
(A.104)
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where

M+ = [I− Γg21 · Γ
g
23]
−1
,M− = [I− Γg23 · Γ

g
21]
−1

(A.105)

or

M+ =

[
I− Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
Γ21 · Γ23

]−1

(A.106)

M− =

[
I− Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
Γ23 · Γ21

]−1

(A.107)

Note that following relationships can be obtained

Γg23 ·M+ = M− · Γg23 (A.108)

M+ · Γg21 = Γg21 ·M− (A.109)

Then the regular term can be expressed as

G̃Γ = Km(γ2ρ)Am + Im(γ2ρ)Bm

= Km(γ2ρ
′)
Im(γ2a)

Km(γ2a)

[
Km(γ2ρ)I + Im(γ2ρ)

Km(γ2b)

Im(γ2b)
Γ23

]
M+Γ21

+ Im(γ2ρ
′)
Km(γ2b)

Im(γ2b)

[
Im(γ2ρ)I +Km(γ2ρ)

Im(γ2a)

Km(γ2a)
Γ21

]
M−Γ23

= Km(γ2ρ
′) [Km(γ2ρ)I + Im(γ2ρ)Γg23] M+Γg21

+ Im(γ2ρ
′) [Im(γ2ρ)I +Km(γ2ρ)Γg21] M−Γg23

(A.110)

A.2.5 Tube with an External Source

Region 1 Region 2

µ1,σ1 µ2,σ2

Region 3

µ3,σ3

a

b

Figure A.8: Tube with source in region 3
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First, we expressed the potentials in different regions as ψ̃1,ρ

ψ̃2,ρ


1

= [
Km(γ1ρ)

Km(γ1a)
]a1m (A.111)

 ψ̃1,ρ

ψ̃2,ρ


2

= [
Im(γ2ρ)

Im(γ2a)
I +

Km(γ2ρ)

Km(γ2a)
Γ21]a2m (A.112)

 ψ̃1,ρ

ψ̃2,ρ


3

= [
Im(γ3ρ)

Im(γ3b)
I +

Km(γ3ρ)

Km(γ3b)
Γ̃32]a3m (A.113)

Similarly to source inside tube case, we have two constraints at the interface ρ = b to obtain

two equations as follow

a2m

Im(γ2a)
I = Tg

32

a3m

Im(γ3b)
I + Γg23Γ21

a2m

Km(γ2a)
(A.114)

Γ̃32
a3m

Km(γ3b)
= Γg32

a3m

Im(γ3b)
+ Tg

23Γ21
a2m

Km(γ2a)
(A.115)

By solving Eq.A.114, we have

a2m =
Im(γ2a)

Im(γ3b)
[I− Γg23Γ

g
21]
−1

Tg
32a3m (A.116)

Substituting Eq.A.115, we obtain

Γ̃g32 = Γg32 + Tg
23Γ

g
21[I− Γg23Γ

g
21]
−1

Tg
32 =

Im(γ3b)

Km(γ3b)
Γ̃32 (A.117)

in the non-normalized form, and

Γ̃32 = Γ32 +
Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
T23 · Γ21

(
I− Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
Γ23 · Γ21

)−1

·T32 (A.118)

in the normalized form.

The TE and TM potentials in the tube metal is ψ̃1,ρ

ψ̃2,ρ


2

= [Im(γ2ρ)I +Km(γ2ρ)Γg21][I− Γg23Γ
g
21]
−1

Tg
32

a3m

Im(γ3b)
(A.119)
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APPENDIX B. BOBBIN COIL CO-AXIAL WITH BOREHOLE AND

TUBE STRUCTURES

Figure B.1: A eddy current coil located inside coaxial with borehole, the number 1,2,3,4 indi-

cates different region

The coil impedance changes inside a borehole whose axis is co-axis with that of borehole,

Fig. B.1 can be obtained by

∆Z = −8iωµ0v
2

∞∫
0

sin2(
κ`

2
)

1

κ6
ψI

2(κr1, κr2)Γ(κ)dκ (B.1)

where v is the turn density and Γ is the reflection coefficient of a source inside the borehole

shown as follow

Γ(κ) =
κK0(κr3)K1(γr3)− (γ/µr)K0(γr3)K1(κr3)

(γ/µr)K0(γr3)I1(κr3) + κK1(γr3)I0(κr3)
(B.2)

Function ψI and ψKcan be found in Appendix C. γ =
√
κ2 − k2. k2 = iωµσ. µr and σ are the

relative permeability and conductivity of conductive material.
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The reflection and transmission coefficient with source inside can be expressed more gener-

ally as

Γi,i+1(κ) =
(γi/µr,i)K0(γiri)K1(γi+1ri)− (γi+1/µr,i+1)K0(γi+1ri)K1(γiri)

(γi+1/µr,i+1)K0(γi+1ri)I1(γiri) + (γi/µr,i)K1(γi+1ri)I0(γiri)
(B.3)

here i is the region index. Γi,i+1(κ) is the reflection coefficient from region i to region i + 1

with the source in region i. Similarly, we have transmission coefficient with source inside as

T i,i+1(κ) =
(1/riµr,i)

(γi+1/µr,i+1)K0(γi+1r)I1(γiri) + (γi/µr,i)K1(γi+1ri)I0(γiri)
(B.4)

For source outside, we have

Γi+1,i(κ) =
(γi+1/µr,i+1)I0(γi+1ri)I1(γiri)− (γi/µr,i)I1(γi+1ri)I0(γiri)

(γi+1/µr,i+1)K0(γi+1ri)I1(γiri) + (γi/µr,i)K1(γi+1ri)I0(γiri)
(B.5)

T i+1,i(κ) =
(1/riµr,i+1)

(γi+1/µr,i+1)K0(γi+1ri)I1(γiri) + (γi/µr,i)K1(γi+1ri)I0(γiri)
(B.6)

For the coil inside a tube, the only modification is to replace the Γ of borehole by that of

tube. The reflection coefficient can be obtained by

Γ(κ) = Γ3,4(κ) +
T 4,3(κ)Γ4,5(κ)T 3,4(κ)

1− Γ4,3(κ)Γ4,5(κ)
(B.7)

Figure B.2: A eddy current coil located inside coaxial with Tube, the number 1,2,3,4,5 indicates

different region
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The coil impedance changes outside a conductive tube whose axis is co-axis with that of

tube, Fig. B.3, is determined by

∆Z = −8iωµ0v
2

∞∫
0

sin2(
κ`

2
)

1

κ6
ψK

2(κr3, κr4)Γ(κ)dκ (B.8)

where Γ is the reflection coefficient of a source outside the tube, which can be calculated by

Γ(κ) = Γ3,2(κ) +
T 2,3(κ)Γ2,1(κ)T 3,2(κ)

1− Γ2,1(κ)Γ2,3(κ)
(B.9)

Similarly, the impedance change of coil circulating a conductive rod can be obtained by

replace the reflection coefficient by that of rod with source outside.

Figure B.3: A eddy current coil located outside coaxial with Tube, the number 1,2,3,4,5 indi-

cates different region
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APPENDIX C. USEFUL MATHEMATICAL FORMULATIONS

C.1 Fourier and Bessel Transforms

• Fourier Transform

f(t) =
1

2π

∫ ∞
−∞

g(ω)e−iωtdω (C.1)

g(ω) =

∫ ∞
−∞

f(t)eiωtdt (C.2)

which are usually used for time domain

f(x) =
1

2π

∫ ∞
−∞

g(h)eihxdh (C.3)

g(h) =

∫ ∞
−∞

f(x)e−ihxdx (C.4)

which are usually used for space domain

• Hankel Transform

Fv(κ) =

∫ ∞
0

f(ρ)Jv(κρ)ρdρ (C.5)

f(ρ) =

∫ ∞
0

Fv(κ)Jv(κρ)κdκ (C.6)

where v is assumed to be a positive real constant not necessarily integer.

C.2 Identities

Some useful identities of vector analysis and dyadic analysis frequently encountered in this

thesis will be listed in the following sections. The dyadic analysis is an extension of vector

analysis to a higher level. More comprehensive details about dyadic analysis can be found in

Tai’s book [96].
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C.2.1 Differential Operators

1. ∇(fA) = A∇f + f∇A

2. ∇2f = ∇ · (∇f)

In Spherical Coordinate System

1. I = r̂r̂ + θ̂θ̂ + φ̂φ̂ = x̂x̂+ ŷŷ + ẑẑ

2. ∇r̂ = 1
r (θ̂θ̂ + φ̂φ̂)

3. ∇θ̂ = −θ̂r̂ 1
r + φ̂φ̂1

r cot θ

4. ∇φ̂ = −φ̂r̂ 1
r − φ̂θ̂

1
r cot θ

5. ∇r = r̂

6. ∇1
r = − r̂

r2

7. ∇∇1
r = −∇ r̂

r2
= −(r̂∇ 1

r2
+ 1

r2
∇r̂) = 3r̂r̂ 1

r3
− I 1

r3

In Cylindrical Coordinate System

1. ∇f = ρ̂∂f∂ρ + φ̂ ∂f
ρ∂ϕ + ẑ ∂f∂z

2. ∇ ·A = 1
ρ
∂
∂ρ (ρAρ) +

∂Aϕ
ρ∂ϕ + ∂Az

∂z

3. ∇×A = ρ̂
(

1
ρ
∂Az
∂φ −

∂Aφ
∂z

)
+ φ̂

(
∂Aρ
∂z −

∂Az
∂ρ

)
+ ẑ 1

ρ

(
∂(ρAφ)
∂ρ − ∂Aρ

∂φ

)
4. ∇2A = ρ̂

(
∂2Aρ
∂ρ2

+ 1
ρ
∂Aρ
∂ρ −

Aρ
ρ2

+ 1
ρ2
∂2Aρ
∂φ2
− 2

ρ2
∂Aφ
∂φ +

∂2Aρ
∂z2

)
+ φ̂

(
∂2Aφ
∂ρ2

+ 1
ρ
∂Aφ
∂ρ −

Aφ
ρ2

+ 1
ρ2
∂2Aφ
∂φ2

+ 2
ρ2
∂Aρ
∂φ +

∂2Aφ
∂z2

)
+ ẑ

(
∂2Az
∂ρ2

+ 1
ρ
∂Az
∂ρ + 1

ρ2
∂2Az
∂φ2

+ ∂2Az
∂z2

)
5. ∇2ψ = ∂2ψ

∂ρ2
+ 1

ρ
∂ψ
∂ρ + 1

ρ2
∂2ψ
∂φ2

+ ∂2ψ
∂z2

6. ∇ρ̂ = 1
r φ̂φ̂

7. ∇φ̂ = −1
r φ̂r̂

8. ∇ẑ = 0

9. ∇f = ρ̂∂f∂ρ + φ̂1
ρ
∂f
∂φ + ẑ ∂f∂z
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C.2.2 Integral Identities

∫ zG+∆z/2

zG−∆z/2
eγijz

′
dz′ =

2eγijzG

γij
sinh

(
γij

∆z

2

)
(C.7)∫ zG+∆z/2

zG−∆z/2
e−γijz

′
dz′ =

2e−γijzG

γij
sinh

(
γij

∆z

2

)
(C.8)∫ xG+∆x/2

xG−∆x/2
sin(uix

′)dx′ =
2

ui
sin(uixG) sin

(
ui

∆x

2

)
= ∆x sin(uixG) sinc

(
ui

∆x

2π

)
(C.9)∫ xG+∆x/2

xG−∆x/2
cos(uix

′)dx′ =
2

ui
cos(uixG) sin

(
ui

∆x

2

)
= ∆x cos(uixG) sinc

(
ui

∆x

2π

)
(C.10)

C.3 Bessel Function

Here we defining

Λm(x) =
xI ′m(x)

Im(x)
,Mm(x) =

xK ′m(x)

Km(x)
(C.11)

We can easily get

Λm(x)−Mm(x) =
x(I ′mKm − ImK ′m)

ImKm
=

1

ImKm
(C.12)

Λm(x) =
xI ′m(x)

Im(x)
= m+

xIm+1(x)

Im(x)
(C.13)

Mm(x) =
xK ′m(x)

Km(x)
= m− xKm+1(x)

Km(x)
(C.14)

ψI(r1, r2) =

r2∫
r1

I1(x)xdx (C.15)

ψK(r1, r2) =

r2∫
r1

K1(x)xdx (C.16)

χ(s1, s2) =

s2∫
s1

J1(x)xdx (C.17)

I ′m(z) = Im−1(z)− m

z
Im(z) (C.18)

I ′m(z) = Im+1(z) +
m

z
Im(z) (C.19)

I ′m(z) =
Im+1(z) + Im−1(z)

2
(C.20)
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K ′m(z) = −Km−1(z)− m

z
Km(z) (C.21)

K ′m(z) = −Km+1(z) +
m

z
Km(z) (C.22)

K ′m(z) = −Km+1(z) +Km−1(z)

2
(C.23)

Note that both I ′m(z) and K ′m(z) are even functions with respect to order m.

∫
zJ0(kz)dz =

z

k
J1(kz) (C.24)∫

J1(z)dz = −J0(z) (C.25)

∫ b

a
zJ0(kz)dz =

b

k
J1(kb)− a

k
J1(ka) (C.26)

page 222 [102]

J ′0(z) = −J1(z) (C.27)

J ′v(z) = Jv−1(z)− (v/z)Jv(z) (C.28)

J ′v(z) = −Jv+1(z) + (v/z)Jv(z) (C.29)
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